Skip to main content

Advertisement

Log in

Applications of Chitosan in the Seafood Industry and Aquaculture: A Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

There has recently been an increasing interest in seafood products due to the growing awareness of their nutraceutical value. However, marine-based products are highly susceptible to deterioration, mainly because of their high contents of polyunsaturated fatty acids (PUFAs), their high water activity, abundant free amino acids, neutral pH, and the presence of autolytic enzymes. In recent decades, various alternative methods have been developed to address this issue. Among the proposed solutions, chitosan has been highlighted as one of the most promising solutions. Chitosan, a deacetylated derivative of chitin, has attracted high consideration for its nontoxicity, biocompatibility, and biodegradability. Moreover, it is a polymer with versatile functional properties. For this reason, chitosan, which is commercially produced mostly from marine sources (e.g., crustacean shells), has been used to stabilize seafood-based products. In this review, chitosan is highlighted with respect to the various potential applications exploiting its many features, such as antibacterial and antioxidant properties, edible film- and coating-forming ability, the treatment of seafood industry effluent, enhanced gelling properties, micro- and nanocarrier abilities for bioactive compounds, functional foods, and drug compounds from aquaculture and seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn, C. B., & Lee, E. H. (1992). Utilization of chitin prepared from the shellfish crust.2. Effect of chitosan film packaging on quality of lightly-salted and dried horse mackerel. Bulletin of the Korean Fisheries Society, 25, 51–57.

    CAS  Google Scholar 

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: a review. LWT-Food Science and Technology, 43, 837–842.

    Article  CAS  Google Scholar 

  • Alishahi, A., Mirvaghefi, A., Rafie-Tehrani, M., Farahmand, H., Shojaosadati, S. A., Dorkoosh, F. A., et al. (2011a). Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry, 126, 935–940.

    Article  CAS  Google Scholar 

  • Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Koshio, S., Dorkoosh, F. A., et al. (2011b). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydrate Polymers, 86, 142–146.

    Article  CAS  Google Scholar 

  • Allan, C. R., & Hardwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology, 3, 285–287.

    Article  CAS  Google Scholar 

  • Aydin, Z., & Akbuga, J. (1996). Chitosan beads for delivery of salmon calcitonin: preparation and release characteristics. International Journal of Pharmaceutics, 131, 101–103.

    Article  CAS  Google Scholar 

  • Benjakul, S., Visessanguan, W., Phatchrat, S., & Tanaka, M. (2003). Chitosan affects transglutaminase-induced surimi gelation. Journal of Food Biochemistry, 27, 53–66.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., & Sillanpa, M. (2009). Application of chitin- and chitosan-derivatives for water and wastewater—a short review. Advances in Colloid and Interface Science, 55, 9479–9488.

    Google Scholar 

  • Bordenave, N., Grelier, S., & Cama, V. (2007). Water and moisture susceptibility of chitosan and paper-based materials: structure–property relationships. Journal of Agriculture and Food Chemistry, 55, 9479–9488.

    Article  CAS  Google Scholar 

  • Bough, W. A. (1976). Chitosan—a polymer from seafood waste, for use in treatment of food processing wastes and activated sludge. Process Biochemistry, 11, 13–16.

    Google Scholar 

  • Cadwallader, K. R., & Shahidi, F. (2001). Identification of potent odorants in seal blubber oil by direct thermal desorption-gas chromatography-olfactometry. In F. Shahidi & J. W. Finley (Eds.), Omega-3 fatty acids: chemistry, nutrition and health effects (Vol. Symposium series 788, pp. 221–234). Washington, DC: American chemical society.

    Chapter  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4, 849–875.

    Article  CAS  Google Scholar 

  • Cao, R., Xue, C. H., & Liu, Q. (2009). Change in microbial flora of pacific oysters (Crassostera gigas) during refrigerated storage and its shelf life extension by chitosan. International Journal of Food Microbiology, 131, 272–276.

    Article  CAS  Google Scholar 

  • Carlson, R. P., Taffs, R., Davison, W. M., & Steward, P. S. (2008). Anti-biofilm properties of chitosan coated surfaces. Journal of Biomaterial Science Polymer, 19, 1035–1046.

    Article  CAS  Google Scholar 

  • Castell, C. H., Maclean, J., & Moore, B. (1965). Rancidity in lean fish muscle. IV. Effect of sodium chloride and other salts. Journal of the Fisheries Research Board of Canada, 22, 929–944.

    Article  CAS  Google Scholar 

  • Chen, L. C., Kung, S. K, Chen, H. H., & Lin, S. B. (2010). Evaluation of zeta potential difference as an indicator for antibacterial strength of low molecular weight chitosan. Carbohydrate Polymers, 82, 913–919.

    Google Scholar 

  • Chi, F. H., & Cheng, W. P. (2006). Use of chitosan as coagulant to treat wastewater from milk processing plant. Journal of Polymer and the Environment, 14, 411–417.

    Article  CAS  Google Scholar 

  • Chiang, M. T., Yao, H. T., & Chen, H. C. (2000). Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol. Bioscience, Biotechnology, and Biochemistry, 5, 965–971.

    Article  Google Scholar 

  • Decker, E. A., & Haultin, H. O. (1992). Lipid oxidation in muscle foods via redox ion. In A. J. Angelo (Ed.), Lipid oxidation in food (pp. 33–54). Washington, D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Deladino, L., Anbinder, P. S., Navarro, A. S., & Martino, M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymer, 71, 126–134.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as coating on fruit and vegetables. Food Microbiology, 21, 703–714.

    Article  CAS  Google Scholar 

  • Dias, F. S., Querroz, D. C., Nascimento, R. F., & Lima, M. B. (2008). Simple system for preparation of chitosan microspheres. Quimica Nova, 31, 160–163.

    Article  CAS  Google Scholar 

  • Duan, J., Cherian, G., & Zhao, Y. (2009). Quality enhancement in fresh and frozen lngcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chemistry, 119, 524–532.

    Article  Google Scholar 

  • Duan, J., Jiang, Y., Cherian, G., & Zhao, Y. (2010). Effect of combined chitosan–krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chemistry, 122, 1035–1042.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Tripathi, S., Mehratra, G. M., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.

    Article  CAS  Google Scholar 

  • El Tahlawy, K. F., El Benday, M. A., Elhendawy, A. G., & Hudson, S. M. (2005). The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymer, 60, 421–430.

    Article  CAS  Google Scholar 

  • Fang, Y., Lou, M. M., Li, B., Xie, G. L., Wang, F., Zhang, L. X., et al. (2010). Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World Journal of Microbiology and Biotechnology, 26, 443–450.

    Article  CAS  Google Scholar 

  • Feng, T., Du, Y., Li, J., Hu, Y., & Kennedy, J. F. (2008). Enhancement of antioxidant activity of chitosan by irradiation. Carbohydrate Polymer, 73, 126–132.

    Article  CAS  Google Scholar 

  • Fernandez-Saiz, P., Soler, C., Lagaron, J. M., & Ocio, M. J. (2010). Effects of chitosan films on the growth of Listeria monocytogenes. Staphylococcus aureus and Salmonella spp. in laboratory media and in fish soup. International Journal of Food Microbiology, 137, 287–294.

    Article  CAS  Google Scholar 

  • Gomez-Guillen, M., Montero, P., Solas, M. T., & Perez-Mateos, A. G. (2005). Effect of chitosan and microbial transglutaminase on the gel forming ability of horse mackerel (Trachurus spp.) muscle under high pressure. Food Research International, 38, 103–110.

    Article  CAS  Google Scholar 

  • Guerrero, L., Omil, F., Mendez, R., & Lema, J. M. (1998). Protein recovery during the overall treatment of wastewaters from fish-meal factories. Bioresources Technology, 63, 221–229.

    Article  CAS  Google Scholar 

  • Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology, 71, 235–244.

    Article  CAS  Google Scholar 

  • Hirano, S. (1996). Chitin biotechnology applications. Biotechnology Annual Review, 2, 237–258.

    Article  CAS  Google Scholar 

  • Hsieh, R. J., & Kinsella, J. E. (1989). Oxidation of polyunsaturated fatty acids: mechanism, products and inhibition with emphasis on fish. Advance in Food and Nutrition Research, 33, 233–241.

    Article  CAS  Google Scholar 

  • Jeon, Y. J., Kamil, J. Y. V. A., & Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of Agriculture and Food Chemistry, 50, 67–78.

    Article  Google Scholar 

  • Jeon, J. J., Shahidi, F., & Kim, S. K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Review International, 16, 159–176.

    Article  CAS  Google Scholar 

  • Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43, 1975–1980.

    Article  Google Scholar 

  • Kamil, J. Y. V. A., Jeon, J. J., & Shahidi, F. (2002). Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chemistry, 79, 69–77.

    Article  CAS  Google Scholar 

  • Kataoka, J., Ishizaki, S., & Tanaka, M. (1998). Effects of chitosan on gelling properties of low quality surimi. Journal of Muscle Foods, 9, 209–220.

    Article  Google Scholar 

  • Kester, J. J., & Fennema, O. (1986). Edible films and coatings: a review. Food Technology, 00, 47–59.

    CAS  Google Scholar 

  • Khor E. (2001). The relevance of chitin. In: Chitin: fulfilling a biomaterial promise. New York: Elsevier. pp. 1–8

  • Kim, K. W., & Thomas, R. L. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101, 308–313.

    Article  CAS  Google Scholar 

  • Klaypradit, W., & Huang, Y. W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT-Food Science and Technology, 41, 1133–1139.

    Article  CAS  Google Scholar 

  • Klinkesorn, U., & McClement, D. J. (2009). Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chemistry, 114, 1308–1315.

    Article  CAS  Google Scholar 

  • Kok, T. N., & Park, J. W. (2007). Extending the shelf life of set fish ball. Journal of Food Quality, 30, 1–27.

    Article  CAS  Google Scholar 

  • Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial activity of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144, 51–63.

    Article  CAS  Google Scholar 

  • Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive Functional Polymer, 46, 1–27.

    Article  CAS  Google Scholar 

  • Lanier, T. C., Manning, P. K., Zetterling, T., & Macdonald, G. A. (1992). Process innovations in surimi manufacture. In T. C. Lanier & C. M. Lee (Eds.), Surimi tyechnology (pp. 167–179). New York: Marcel Decker.

    Google Scholar 

  • Ledger, R., Tucker, I. G., & Walker, G. F. (2002). The metabolic barrier of the lower intestinal tract of salmon to the oral delivery of protein and peptide drugs. Journal of Controlled Release, 85, 91–103.

    Article  CAS  Google Scholar 

  • Li, X., & Xia, W. (2010). Effect of chitosan on the gel properties of salt-soluble meat proteins from silver carp. Carbohydrate Polymer, 82, 958–964.

    Article  CAS  Google Scholar 

  • Lopez-Caballero, M. E., Gomez-Guillen, M. C., Perez-Mateos, M., & Montero, P. (2005a). A chitosan-gelating blend as a coating for fish patties. Food Hydrocolloids, 19, 303–311.

    Article  CAS  Google Scholar 

  • Lopez-Caballero, M. E., Gomez-Guillen, M. C., Perez-Mateos, M., & Montero, P. (2005b). A functional chitosan-enriched fish sausage treated by high pressure. Journal of Food Science, 70, 166–171.

    Article  Google Scholar 

  • Mao, L., & Wu, T. (2007). Gelling properties and lipid oxidation of kamabako gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan. Journal of Food Engineering, 82, 128–134.

    Article  CAS  Google Scholar 

  • Mi, F. L., Sung, H. W., & Shyu, S. S. (2002). Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 48, 61–72.

    Article  CAS  Google Scholar 

  • Newton, I. S. (2001). Long chain fatty acids in health and nutrition. In omega-3 fatty acids: chemistry, nutrition and health effects. In F. Shahidi & J. W. Finley (Eds.), ACS symposium series 788 (pp. 14–27). Washington, DC: American chemical society.

    Google Scholar 

  • No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of Food Science, 72, 87–100.

    Article  Google Scholar 

  • No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosan and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72.

    Article  CAS  Google Scholar 

  • Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hossieni, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120, 193–198.

    Article  CAS  Google Scholar 

  • Peniche, C., Howland, I., Carrillo, O., Zaldivar, C., & Arguelles-Monal, W. (2004). Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids, 18, 865–871.

    Article  CAS  Google Scholar 

  • Pittermann, W., Horner, V., & Wachter, R. (1997). Food applications of high molecular weight chitosan in skin care applications. In R. A. A. Muzzarelli & M. G. Peter (Eds.), Chitin handbook (p. 361). Grottammare, Italy: European Chitin Society.

    Google Scholar 

  • Qi, C. R., Bang-Zhang, Y., & Lan-Ian, Z. (2010). Combined effect of ozonated water and chitosan on the shelf life of pacific oyster (Crassostrea gigas). Innovativ Food Science and Emerging Technologies, 11, 108–112.

    Article  Google Scholar 

  • Qin, Y. (1993). Chelating property of chitosan fibers. Journal of Applied Polymer, 49, 727–731.

    Article  CAS  Google Scholar 

  • Raafat, D., Bargen, K., Haas, A., & Sahl, H. G. (2008). Insights into the mode of action of chitosan as an antimicrobial compound. Applied and Environmental Microbiology, 74, 3764–3773.

    Article  CAS  Google Scholar 

  • Raafat, D., & Sahl, H. G. (2009). Chitosan and its antimicrobial potential—a critical literature survey. Microbial Biotechnology, 2, 186–201.

    Article  CAS  Google Scholar 

  • Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4, 1457–1465.

  • Rajeshkumar, S., Ishaq Ahmed, V. D., Parameswaran, V., Sudhakaran, R., Sarath Babu, V., & Sahl Hameed, A. S. (2008). Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio anguillarum. Fish & Shellfish Immunology, 25, 47–56.

    Article  CAS  Google Scholar 

  • Rajeshkumar, S., Venkatesan, C., Sarathi, M., Sarathbabu, V., Thomas, J., & Anver Basha, K. (2009). Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 26, 429–437.

    Article  CAS  Google Scholar 

  • Roller, S., & Corvill, N. (2000). The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads. Journal of Food Protection, 63, 202–209.

    CAS  Google Scholar 

  • Ross, S. (2000). Functional foods: the food and drug administration perspective. American Journal of Clinical Nutrition, 71, 1735s–1738s.

    CAS  Google Scholar 

  • Sathivel, S. (2005). Chitosan and protein coatings affect yield, moisture loss, lipid oxidation of pink salmon (Oncorhynchus gorbushcha) fillets during frozen storage. Journal of Food Science, 70, 755–459.

    Article  Google Scholar 

  • Sathivel, S., Liu, Q., Huang, J., & Prinyawiwatkul, W. (2007). The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Engineering, 83, 366–375.

    Article  CAS  Google Scholar 

  • Savant, V.D. (2001). Protein absorption on chitosan-polyanion complexes: application to aqueous food processing wastes. PhD. Thesis, Food Science and Technology, Oregon State University.

  • Savant, V. D., & Torres, J. A. (2000). Chitosan based coagulating agents for treatment of cheddar cheese whey. Biotechnology Progress, 16, 1091–1097.

    Article  CAS  Google Scholar 

  • Savant, V. D., & Torres, J. A. (2003). Fourier transform infrared analysis of chitosan based coagulating agents for treatment of surimi waste water. Journal of Food Technology, 1, 23–28.

    Google Scholar 

  • Schep, L. J., Tucker, I. G., Young, G., Ledger, R., & Butt, A. G. (1999). Controlled release opportunities for oral peptide delivery in aquaculture. Journal of Controlled Release, 59, 1–14.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Han, X. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, 33, 501–547.

    Article  CAS  Google Scholar 

  • Shahidi, F., Kamil, J. Y. V. A., & Jeon, Y. J. (1999). Food applications of chitin and chitosan. Trends in Food Science and Technology, 10, 37–51.

    Article  CAS  Google Scholar 

  • Shahidi, F., Kamil, J. Y. V. A., & Jeon, J. J. (2002). Antioxidant role of chitosan in a cooked cod (Gadus morhua) model system. Journal of Food Lipids, 9, 57–64.

    Article  CAS  Google Scholar 

  • Swapna Joseph, C., Harish Prashanth, K. V., Rastogi, N. K., Indiramma, A. R., Yella Reddy, S., & Raghavarao, K. S. M. S. (2011). Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food and Bioprocess Technology. doi:10.1007/s11947-009-0203-1.

  • Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—the undisputed biomolecule of great potential. Critical Review in Food Science and Nutrition, 43, 61–87.

    Article  CAS  Google Scholar 

  • Tian, J., Yu, J., & Sun, X. (2008). Chitosan microspheres as candidate plasmid vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology, 126, 220–229.

    Article  CAS  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.

    Google Scholar 

  • Weist, J. L., & Karel, M. (1992). Development of a fluorescence sensor to monitor lipid oxidation. 1. Florescence spectra of chitosan powder and polyamid powder affect exposure to volatile lipid oxidation products. Journal of Agriculture and Food Chemistry, 40, 1158–1162.

    Article  CAS  Google Scholar 

  • Wibowo, S. (2003). Effect of the molecular weight and degree of deacetylation of chitosan and nutritional evaluation of solid recovered from surimi processing plant. PhD. Thesis. Food Science and Technology, Oregon State University

  • Wibowo, S., Velazquez, G., Savant, V., & Torres, J. A. (2005). Surimi wash water treatment for protein recovery: effect of chitosan-alginate complex concentration and treatment time on protein adsorption. Bioresoures Technology, 96, 665–671.

    Article  CAS  Google Scholar 

  • Wibowo, S., Savant, V., Cherian, G., Savange, T. F., Velaquez, G., & Torres, J. A. (2007). A feeding study to assess nutritional quality and safety of surimi wash water proteins recovered by a chitosan–alginate complex. Journal of Food Science, 72, 179–184.

    Article  Google Scholar 

  • Wibowo, S., Velazquez, G., Savant, V., & Torres, A. (2007). Effect of chitosan type on protein and water recovery efficiency from surimi wash water treated with chitosan–alginate complexes. Bioresources Technology, 98, 539–545.

    Article  CAS  Google Scholar 

  • Ye, M., Neetao, H., & Chen, H. (2008). Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogens on cold-smoked salmon. International Journal of Food Microbiology, 127, 235–240.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aïder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alishahi, A., Aïder, M. Applications of Chitosan in the Seafood Industry and Aquaculture: A Review. Food Bioprocess Technol 5, 817–830 (2012). https://doi.org/10.1007/s11947-011-0664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0664-x

Keywords

Navigation