Skip to main content
Log in

On the spectral theory of trees with finite cone type

Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study basic spectral features of graph Laplacians associated with a class of rooted trees which contains all regular trees. Trees in this class can be generated by substitution processes. Their spectra are shown to be purely absolutely continuous and to consist of finitely many bands. The main result gives stability of the absolutely continuous spectrum under sufficiently small radially label symmetric perturbations for non-regular trees in this class. In sharp contrast, the absolutely continuous spectrum can be completely destroyed by arbitrary small radially label symmetric perturbations for regular trees in this class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aizenman, R. Sims and S. Warzel, Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs, Probability Theory and Related Fields 136 (2006), 363–394.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Breuer, Singular continuous spectrum for the Laplacian on certain sparse trees, Communications in Mathematical Physics 269 (2007), 851–857.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Breuer and R. L. Frank, Singular spectrum for radial trees, Reviews in Mathematical Physics 21 (2009), 1–17.

    Article  MathSciNet  Google Scholar 

  4. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.

    Book  MATH  Google Scholar 

  5. S. Denisov, On the preservation of absolutely continuous spectrum for Schrödinger operators, Journal of Functional Analysis 231 (2006), 143–156.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Froese, D. Hasler and W. Spitzer, Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs, Journal of Functional Analysis 230 (2006), 184–221.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Froese, D. Hasler and W. Spitzer, Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein’s theorem, Communications in Mathematical Physics 269 (2007), 239–257.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Higuchi and Y. Nomura, Spectral structure of the Laplacian on a covering graph, European Journal of Combinatorics 30 (2009), 570–585.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Katok, Fuchsian Groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992.

  10. M. Keller, On the spectral theory of operators on trees, Ph.D Thesis, Friedrich Schiller Universität Jena, 2010. arXiv:1101.2975.

  11. M. Keller, D. Lenz and S. Warzel, Absolutely continuous spectrum for random operators on trees of finite cone type, Journal d’Analyse Mathematique, 2011, to appear, arXiv:1001.3600.

  12. A. Klein, Absolutely continuous spectrum in the Anderson model on the Bethe lattice, Mathematical Research Letters 1 (1994), 399–407.

    MathSciNet  MATH  Google Scholar 

  13. A. Klein, Extended states in the Anderson model on the Bethe lattice, Advances in Mathematics 133 (1998), 163–184.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Krön, Green functions on self-similar graphs and bounds for the spectrum of the Laplacian, Université de Grenoble. Annales de l’Institut Fourier (Grenoble) 52 (2002), 1875–1900.

    Article  MATH  Google Scholar 

  15. B. Krön and E. Teufl, Asymptotics of the transition probabilities of the simple random walk on self-similar graphs, Transactions of the American Mathematical Society 356 (2004), 393–414.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kupin, Absolutely continuous spectrum of a Schrödinger operator on a tree, Journal of Mathematical Physics 49 (2008), 113506.1–113506.10.

    Article  MathSciNet  Google Scholar 

  17. Y. Last, Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation, Communications in Mathematical Physics 274 (2007), 243–252.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Lenz and P. Stollmann, Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians, Duke Mathematical Journal 131 (2006), 203–217.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Lyons, Random walks and percolation on trees, The Annals of Probability 18 (1990), 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Mairesse, Random walks on groups and monoids with a Markovian harmonic measure, Electronic Communications in Probability 10 (2005), 1417–1441.

    MathSciNet  Google Scholar 

  21. J. Milnor, On the Betti numbers of real varieties, Proceedings of the American Mathematical Society 15 (1964), 275–280.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Nagnibeda and W. Woess, Random walks on trees with finitely many cone types, Journal of Theoretical Probability 15 (2002), 383–422.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992.

    Book  MATH  Google Scholar 

  24. B. Simon, Operators with singular continuous spectrum: I. General operators, Annals of Mathematics 141 (1995), 131–145.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Stollmann, Caught by Disorder — Bound States in Random Media, Birkhäuser, Boston, 2002.

    Google Scholar 

  26. T. Sunada, A periodic Schrödinger operator on an abelian cover, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), 575–583.

    MathSciNet  MATH  Google Scholar 

  27. C. Takacs, Random walk on periodic trees, Electronic Communications in Probability 2 (1997), 1–16.

    MathSciNet  Google Scholar 

  28. J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, 68, Springer-Verlag, New York-Berlin, 1980.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, M., Lenz, D. & Warzel, S. On the spectral theory of trees with finite cone type. Isr. J. Math. 194, 107–135 (2013). https://doi.org/10.1007/s11856-012-0059-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0059-3

Keywords

Navigation