Skip to main content
Log in

Twinning-Associated Boundaries in Hexagonal Close-Packed Metals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, we highlighted twinning-associated boundaries that play crucial roles in nucleation, growth, and interactions of deformation twins. According to microscopic characterizations and atomistic simulations in Mg, three types of boundaries are reviewed, including (I) prismatic-basal boundaries associated with twin nucleation via pure-shuffle mechanism, (II) serrated coherent twin boundaries associated with twin growth and shrinkage via glide and climb of twinning dislocations, and (III) tilt prismatic–prismatic and basal–basal boundaries associated with co-zone twin–twin interactions. More importantly, these boundaries affect twinning and detwinning processes that may correspond to twinning-induced hardening and seem universally associated with twins in hexagonal close-packed metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Christian and S. Mahajan, Progr. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  2. M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).

    Article  Google Scholar 

  3. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp, Scr. Mater. 63, 827 (2010).

    Article  Google Scholar 

  4. S. Mendelson, Mater. Sci. Eng. 4, 231 (1969).

    Article  Google Scholar 

  5. N. Thompson and D.J. Millard, Philos. Mag. 43, 422 (1952).

    Google Scholar 

  6. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tomé, Scr. Mater. 61, 903 (2009).

    Article  Google Scholar 

  7. J. Wang, J.P. Hirth, and C.N. Tomé, Acta Mater. 57, 5521 (2009).

    Article  Google Scholar 

  8. J. Wang, I.J. Beyerlein, and C.N. Tomé, Scr. Mater. 63, 741 (2010).

    Article  Google Scholar 

  9. I.J. Beyerlein, J. Wang, M.R. Barnett, and C.N. Tome, Proc. R. Soc. A 468, 1496 (2012).

    Article  Google Scholar 

  10. J. Wang and H. Huang, Appl. Phys. Lett. 88, 203112 (2006).

    Article  Google Scholar 

  11. H.J. Chu, J. Wang, and I.J. Beyerlein, Scr. Mater. 67, 69 (2012).

    Article  Google Scholar 

  12. J. Wang and H. Huang, Appl. Phys. Lett. 85, 5983 (2004).

    Article  Google Scholar 

  13. Y.T. Zhu, X.Z. Liao, and X.L. Wu, Prog. Mater Sci. 57, 1 (2012).

    Article  Google Scholar 

  14. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 64, 149 (2011).

    Article  Google Scholar 

  15. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).

    Article  Google Scholar 

  16. Z.W. Shan, L. Lu, A.M. Minor, E.A. Stach, and S.X. Mao, JOM 60, 71 (2008).

    Article  Google Scholar 

  17. G.B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).

    Google Scholar 

  18. H.I. Aaronson and M.G. Hall, Metall. Mater. Trans. A 25, 1797 (1994).

    Article  Google Scholar 

  19. J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tomé, and I.J. Beyerlein, Mater. Res. Lett. 1 (2013).

  20. B. Li and E. Ma, Acta Mater. 57, 1734 (2009).

    Article  Google Scholar 

  21. Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, Nature 463, 335 (2010).

    Article  Google Scholar 

  22. J. Wang, I.J. Beyerlein, J.P. Hirth, and C.N. Tomé, Acta Mater. 59, 3990 (2011).

    Article  Google Scholar 

  23. J. Wang, I.J. Beyerlein, and J.P. Hirth, Modell. Simul. Mater. Sci. Eng. 20, 024001 (2012).

    Article  Google Scholar 

  24. C.N. Tomé, I.J. Beyerlein, J. Wang, and R.J. McCabe, JOM 63 (3), 19 (2011).

  25. X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Liu, P.T. Wang, and M.F. Horstemeyer, Scr. Mater. 67, 862 (2012).

    Article  Google Scholar 

  26. J. Wang, L. Liu, C.N. Tomé, S.X. Mao, and S.K. Gong, Mater. Res. Lett. 1, 81 (2013).

    Article  Google Scholar 

  27. J. Tu, X. Zhang, J. Wang, Q. Sun, Q. Liu, and C.N. Tomé, Appl. Phys. Lett. 103, 051903 (2013).

    Article  Google Scholar 

  28. B. Xu, L. Capolungo, and D. Rodney, Scr. Mater. 68, 901 (2013).

    Article  Google Scholar 

  29. Q. Yu, J. Zhang, and Y.Y. Jiang, Philos. Mag. Lett. 91, 757 (2011).

    Article  Google Scholar 

  30. J. Zhang, Q. Yu, Y. Jiang, and Q. Li, Int. J. Plast. 27, 768 (2011).

    Article  MATH  Google Scholar 

  31. R.W. Cahn, Acta Metall. 1, 49 (1953).

    Article  Google Scholar 

  32. E. Roberts and P.G. Partridge, Acta Metall. 14, 513 (1966).

    Article  Google Scholar 

  33. Q. Yu, J. Wang, Y.Y. Jiang, R.J. McCabe, and C.N. Tomé, Mater. Res. Lett. (2013).

  34. J. Wang and I.J. Beyerlein, Modell. Simul. Mater. Sci. Eng. 20, 024002 (2012).

    Article  Google Scholar 

  35. J. Wang and I.J. Beyerlein, Metall. Mater. Trans. A 43, 3556 (2012).

    Article  Google Scholar 

  36. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang, Mater. Sci. Eng. A 555, 93 (2012).

    Google Scholar 

  37. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé, Int. J. Plast. 49, 36 (2013).

    Article  Google Scholar 

  38. H. Wang, P.D. Wu, and J. Wang, Int. J. Plast. 47, 49 (2013).

    Article  Google Scholar 

  39. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang, Int. J. Solids Struct. 49, 2155 (2012).

    Article  Google Scholar 

  40. I.J. Beyerlein, J. Wang, K. Kang, S.J. Zheng, and N.A. Mara, Mater. Res. Lett. 1, 89 (2013).

    Article  Google Scholar 

  41. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth, Acta Mater. 59, 5989 (2011).

    Article  Google Scholar 

  42. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).

    Article  Google Scholar 

  43. N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scr. Mater. 67, 479 (2012).

    Article  Google Scholar 

  44. N. Li, J. Wang, A. Misra, and J.Y. Huang, Microsc. Microanal. 18, 5–1155 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

J.W., Q.Y., and I.J.B. were fully supported by Office of Basic Energy Sciences, Project FWP 06SCPE401, under U.S. DOE Contract No W-7405-ENG-36. Y.J. acknowledges support by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0002144. The valuable discussion with Prof. J. P. Hirth and Dr. C.N. Tomé is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yu, Q., Jiang, Y. et al. Twinning-Associated Boundaries in Hexagonal Close-Packed Metals. JOM 66, 95–101 (2014). https://doi.org/10.1007/s11837-013-0803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0803-0

Keywords

Navigation