Skip to main content
Log in

First-Principles Calculation of Nb2AlC/Nb Interfaces

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have performed a first-principles density functional theory method and molecular dynamics simulation on the Nb2AlC(001)/Nb(001), Nb2AlC(001)/Nb(110), and Nb2AlC(001)/Nb(111) interfaces. The results show that the Nb2AlC(001)/Nb(111) interface structure is the most stable structure of the three. The Al-Nb bonds at the Nb2AlC(001)/Nb(111) interfaces show covalence bonding character, while the Nb-Nb interface bonds are mainly metallic. The Nb-C bonds in Nb2AlC layers are very stable at up to 1500 K temperature and in an oxygen environment. The stable Nb2AlC(001)/Nb(111) structure may have very good oxidation resistance for applications in high-temperature turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.Z. Fu, J. Aero. Mater. 18, 52 (1998).

    Google Scholar 

  2. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M. Stucke, Mater. Sci. Eng. 1, 239 (1997).

    Google Scholar 

  3. J.H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  4. P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk, Mater. Res. Soc. Symp. Proc. 322 (1994).

  5. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt, Metall. Mater. Trans. A 27A, 3801 (1996).

    Article  Google Scholar 

  6. Z.P. Sun, X.P. Guo, and C. Zhang, CALPHAD 36, 82 (2012).

    Article  Google Scholar 

  7. M.R. Jackson, B.P. Bewlay, R.G. Rowe, D.W. Skelly, and H.A. Lipsitt, JOM 48 (1), 39 (1996).

    Article  Google Scholar 

  8. W.Q. Wei, H.W. Wang, Z.X. Gao, and Z.J. Wei, Trans. Nonferrous Met. Soc. China 19, 440 (2009).

    Article  Google Scholar 

  9. S.M. Allameh, R.W. Hayes, E.A. Loria, and W.O. Soboyejo, Mater. Sci. Eng. A 329, 856 (2002).

    Article  Google Scholar 

  10. R.G. Ding, I.P. Jones, and H.S. Jiao, Mater. Sci. Eng. A 485, 126 (2007).

    Google Scholar 

  11. R. Bai, X. Zheng, Z.K. Li, X.M. Cai, F. Wang, D.H. Wang, and J.L. Yu, Proc. Eng. 27, 1241 (2012).

    Article  Google Scholar 

  12. L. Yin, D.Q. Yi, and L.R. Xiao, J. Mater. Protect. 36, 4 (2003).

    Google Scholar 

  13. J.D. Rigney, P.M. Singh, and J.J. Lewandowski, JOM 44 (1), 36 (1992).

    Article  Google Scholar 

  14. T. Arima, K. Miyata, K. Idemitsu, and Y. Inagaki, Prog. Nucl. Energy 51, 307 (2009).

    Article  Google Scholar 

  15. L.G. Wang, L. Jia, R.J. Cui, L.J. Zhang, and H. Zhang, Chin. J. Aero. 25, 292 (2012).

    Article  Google Scholar 

  16. T.E. Strangman, Thin Solid Films 127, 93 (1985).

    Article  Google Scholar 

  17. N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  18. D.R. Clarkea and S.R. Phillpot, Mater. Today 8, 22 (2005).

    Article  Google Scholar 

  19. I. Salama, T. El-Raghy, and M.W. Barsoum, J. Alloys Compd. 347, 271 (2002).

    Article  Google Scholar 

  20. M.W. Barsoum and L. Farber, Science 284, 937 (1999).

    Article  Google Scholar 

  21. M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

    Article  Google Scholar 

  22. M.W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc. 79, 1953 (1996).

    Article  Google Scholar 

  23. S.M. Meier, D.K. Gupta, and K.D. Sheffler, JOM 43 (3), 50 (1991).

    Article  Google Scholar 

  24. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  26. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  28. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  29. VASP 2012 manual. http://cms.mpi.univie.ac.at/vasp/vasp.pdf.

  30. MedeA is commercialized by Materials Design Inc. http://www.materialsdesign.com.

  31. D. Music, Z. Sun, A.A. Voevodin, and J.M. Schneider, J. Phys.: Condens. Matter. 18, 4389 (2006).

    Article  Google Scholar 

  32. G. Hug, M. Jaouen, and M.W. Barsoum, Phys. Rev. B 71, 1 (2005).

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by the NSF-LASiGMA program [Grant No. EPS-1003897 and No. NSF(2010-15)-RII-SUBR), NASA/LEQSF (2009–2012)-Phase3-03 (Grant Number NNG05GH22H], DOE (Award Nos. DE-FE0004734 and DE-FE0003693), and the LONI Institute. We thank Jialin Lei for helping drawing charge density graphs, and Drs. Ridwan Sakidja and Douglas Moreman for proofreading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Yang, S. First-Principles Calculation of Nb2AlC/Nb Interfaces. JOM 65, 326–330 (2013). https://doi.org/10.1007/s11837-012-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0548-1

Keywords

Navigation