Skip to main content
Log in

The stability, mechanical properties, electronic structures and thermodynamic properties of (Ti, Nb)C compounds by first-principles calculations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

First principles was carried out studying the properties of (Ti, Nb)C compounds based on density functional theory. The integration of mechanical behavior, electronic structures, and thermodynamic properties can be optimized by mediating the concentration of the titanium alloying element. The results revealed that these transition metal compounds were stable with the negative formation energy. Nb0.5Ti0.5C (29.15 GPa) demonstrated the largest hardness characterized by moduli (B, G) because of the stable shell configuration. NbC exhibited the strongest anisotropy from the universal anisotropic index (AU) and three-dimensional surface contours. TixNb1−xC compounds displayed relatively strong stress responses along the [001], [110], and [111] directions. Due to the weakening p-d bonding, the ideal tensile strength gradually decreased with the increasing titanium concentration. The electronic structures revealed that the bonding characteristics of the (Ti, Nb)C compounds were a mixture of metallic and covalent bonds. On the other hand, NbC and TiC exhibited a minimum (740.55 K) and maximum (919.29 K) Debye temperature, indicating the stronger metalic bonds of NbC and covalent bonds of TiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H. Zhang, Y. Zou, Z. Zou, and C. Shi: Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings. J. Alloys Compd. 614, 107 (2014).

    CAS  Google Scholar 

  2. L. Dubourg and J. Archambeault: Technological and scientific landscape of laser cladding process in 2007. Surf. Coat. Technol. 202, 5863 (2008).

    CAS  Google Scholar 

  3. E.G. Moghaddam, N. Karimzadeh, N. Varahram, and P. Davami: Impact–abrasion wear characteristics of in situ VC-reinforced austenitic steel matrix composite. Mater. Sci. Eng., A 585, 422 (2013).

    CAS  Google Scholar 

  4. Y.H. Lin, Y.P. Lei, H.G. Fu, and J. Lin: Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding. Mater Des. 80, 82 (2015).

    CAS  Google Scholar 

  5. G.L. Zhao, C.Z. Huang, H.L. Liu, B. Zou, H.T. Zhu, and J. Wang: Preparation of in situ growth TaC whiskers toughening Al2O3 ceramic matrix composite. Int. J. Refract. Hard Met. 36, 122 (2013).

    Google Scholar 

  6. Y.H. Lin, Y.P. Lei, H.G. Fu, and J. Lin: Microstructure and properties of (TiB2 + NiTi)/Ti composite coating fabricated by laser cladding. J. Mater. Eng. Perform. 24, 3717 (2015).

    CAS  Google Scholar 

  7. Y.B. Cao, H.T. Ren, C.S. Hu, Q.X. Meng, and Q. Liu: In situ formation behavior of NbC-reinforced Fe-based laser cladding coatings. Mater. Lett. 147, 61 (2015).

    CAS  Google Scholar 

  8. B. Han, M.Y. Li, and Y. Wang: Microstructure and wear resistance of laser clad Fe–Cr3C2 composite coating on 35CrMo steel. J. Mater. Eng. Perform. 22, 3749 (2013).

    CAS  Google Scholar 

  9. Q.L. Wu, W.G. Li, N. Zhong, W. Gang, and H.S. Wang: Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Mater Des. 49, 10 (2013).

    CAS  Google Scholar 

  10. H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu: Microstructures and properties of low-chromium high corrosion-resistant TiC–VC reinforced Fe-based laser cladding layer. J. Alloys Compd. 622, 62 (2015).

    CAS  Google Scholar 

  11. X.H. Wang, M. Zhang, L. Cheng, S.Y. Qu, and B.S. Du: Microstructure and wear properties of in situ synthesized VC carbide reinforced Fe-based surface composite coating produced by laser cladding. Tribol. Lett. 34, 177 (2009).

    Google Scholar 

  12. C.F. Wu, M.X. Ma, W.J. Liu, M.L. Zhong, W.M. Zhang, and H.J. Zhang: Laser producing Fe-based composite coatings reinforced by in situ synthesized multiple carbide particles. Mater. Lett. 62, 3077 (2008).

    CAS  Google Scholar 

  13. A.K. Srivastava and K. Das: Microstructure and abrasive wear study of (Ti, W)C-reinforced high-manganese austenitic steel matrix composite. Mater. Lett. 62, 3947 (2008).

    CAS  Google Scholar 

  14. Q.T. Li, Y.P. Lei, and H.G. Fu: Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite coating. Appl. Surf. Sci. 316, 610 (2014).

    CAS  Google Scholar 

  15. Q.T. Li, Y.P. Lei, H.G. Fu, Z.W. Wu, and J. Lin: Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs. Rare Met. 10, 1 (2016).

    Google Scholar 

  16. J.H. Jang, C.H. Lee, Y.U. Heo, and D.W. Suh: Stability of (Ti, M)C (M = Nb, V, Mo, and W) carbide in steels using first-principles calculations. Acta Mater. 60, 208 (2012).

    CAS  Google Scholar 

  17. A. Zaou, S. Kacimi, A. Boukortt, and B. Bouhafs: Ab initio studies of structural, elastic and electronic properties of ZrxNb1−xC and ZrxNb1−xN alloys. Phys. B 405, 153 (2010).

    Google Scholar 

  18. S. Ramasubramanian, M. Rajagoplan, R. Thangavel, and J. Kumar: Ab initio study on elastic and thermodynamical properties of Ti1−xZrxC. Eur. Phys. J. B 69, 265 (2009).

    CAS  Google Scholar 

  19. D. Maouche, L. Louail, P. Ruterana, and M. Maamache: Formation and stability of di-transition-metal carbides TixZr1−xC, TixHf1−xC and HfxZr1−xC. Comput. Mater. Sci. 44, 347 (2008).

    CAS  Google Scholar 

  20. X.H. Wang, M. Zhang, L.Q. Ruan, and Z.D. Zou: A first-principles study on elastic properties and stability of TixV1−xC multiple carbide. Trans. Nonferrous Met. Soc. China 21, 1373 (2011).

    CAS  Google Scholar 

  21. R.O. Elliott and C.P. Kempter: Thermal expansion of some transition metal carbides. J. Phys. Chem. 62, 630 (1958).

    CAS  Google Scholar 

  22. M. Yogeswari and G. Kalpana: Half-metallic ferromagnetism in alkaline earth selenides by first principles calculations. Comput. Mater. Sci. 54, 219 (2012).

    CAS  Google Scholar 

  23. D. Jiang, Q. Wang, W. Hu, Z. We, and J. Tong: The effect of tantalum (Ta) doping on mechanical properties of tungsten (W): A first-principles study. J. Mater. Res. 31, 3401 (2016).

    CAS  Google Scholar 

  24. G. Hua and D. Li: A first-principles study on the mechanical and thermodynamic properties of (Nb1−xTix)C complex carbides based on virtual crystal approximation. RSC Adv. 5, 103686 (2015).

    CAS  Google Scholar 

  25. A.M. Nartowski, I.P. Parkin, M. Mackenzie, and A.J. Craven: Solid state metathesis: Synthesis of metal carbides from metal oxides. J. Mater. Chem. 11, 3116 (2001).

    CAS  Google Scholar 

  26. Y.Z. Liu, Y.H. Jiang, R. Zhou, and J. Feng: First principles study the stability and mechanical properties of MC (M = Ti, V, Zr, Nb, Hf, and Ta) compounds. J. Alloys Compd. 582, 500 (2014).

    CAS  Google Scholar 

  27. E.I. Isaev, S.I. Simak, I.A. Abrikosov, and R. Ahuja: Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. J. Appl. Phys. 101, 123519 (2007).

    Google Scholar 

  28. J. Häglund, G.A. Fernández, G. Grimvall, and M. Körling: Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 48, 11685 (1993).

    Google Scholar 

  29. A. Teresiak and H. Kubsch: X-ray investigations of high energy ball milled transition metal carbides. Nanostruct. Mater. 6, 671 (1995).

    Google Scholar 

  30. D.L. Price, B.R. Cooper, and J.M. Wills: Full-potential linear-muffin-tin-orbital study of brittle fracture in titanium carbide. Phys. Rev. B 46, 11368 (1992).

    CAS  Google Scholar 

  31. S. Raju, E. Mohandas, A.L.E. Terrance, and V.S. Raghunathan: Application of the macroscopic atom model of cohesion to structural systematics of L10 compounds. Mater. Lett. 12, 356 (1991).

    CAS  Google Scholar 

  32. X.Y. Chong, Y.H. Jiang, R. Zhou, and J. Feng: First principles study the stability, mechanical and electronic properties of manganese carbides. Comput. Mater. Sci. 87, 19 (2014).

    CAS  Google Scholar 

  33. Y. Luo, J. Wang, J. Li, Z. Hu, and J. Wang: Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7. J. Mater. Res. 30, 493 (2015).

    CAS  Google Scholar 

  34. C.Y. Chen, M. Xu, X. Wei, and H. Lu: Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction. Mater. Sci. Eng., A 662, 385 (2016).

    Google Scholar 

  35. T. Amriou, B. Bouhafs, H. Aourag, B. Khelifa, and S. Bresson: FP-LAPW investigations of electronic structure and bonding mechanism of NbC and NbN compounds. Phys. B 325, 46 (2003).

    CAS  Google Scholar 

  36. D.G. Clerc and H.M. Ledbetter: Mechanical hardness: A semiempirical theory based on screened electrostatics and elastic shear. J. Phys. Chem. Solids 59, 1071 (1998).

    CAS  Google Scholar 

  37. J. Xiao, B. Jiang, K. Huang, and H. Zhu: Structural and elastic properties of TiCxN1−x, TiCxO1−x, TiOxN1−x solid solutions from first-principles calculations. Comput. Mater. Sci. 88, 86 (2014).

    CAS  Google Scholar 

  38. K. Chen and L. Zhao: Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides. J. Phys. Chem. Solids 68, 1805 (2007).

    CAS  Google Scholar 

  39. J.J. Gilman and B.W. Roberts: Elastic constants of TiC and TiB2. J. Appl. Phys. 32, 1405 (1961).

    CAS  Google Scholar 

  40. Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, and S.G. Zhou: Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd. 590, 50 (2014).

    CAS  Google Scholar 

  41. X.Y. Chong, Y.H. Jiang, R. Zhou, and J. Feng: Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Adv. 4, 44959 (2014).

    CAS  Google Scholar 

  42. B. Xiao, J. Feng, C.T. Zhou, Y.H. Jiang, and R. Zhou: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys. 109, 083521 (2011).

    Google Scholar 

  43. Y.Z. Liu, Y.H. Jiang, J. Feng, and R. Zhou: Elasticity, electronic properties and hardness of MoC investigated by first principles calculations. Phys. B 419, 45 (2013).

    CAS  Google Scholar 

  44. J.J. Gilman: Why silicon is hard. Science 261, 1436 (1993).

    CAS  Google Scholar 

  45. J.C. Van Duysen and J.C. Doukhan: Room temperature microplasticity of a spodumene LiAlSi2O6. Phys. Chem. Miner. 10, 125 (1984).

    Google Scholar 

  46. A.Y. Liu and M.L. Cohen: Prediction of new low compressibility solids. Science 245, 841 (1989).

    CAS  Google Scholar 

  47. J.E. Butler and H. Windischmann: Developments in CVD-diamond synthesis during the past decade. MRS Bull. 23, 22 (1998).

    CAS  Google Scholar 

  48. X.Q. Chen, H. Niu, D. Li, and Y. Li: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).

    CAS  Google Scholar 

  49. S.F. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (2009).

    Google Scholar 

  50. H.O. Pierson: Handbook of Refractory Carbides and Nitrides; Properties, Characteristics, Processing and Applications, Vol. 69 (Noyes Publication, New York, NY, 1997); p. 5.

    Google Scholar 

  51. C. Wang, T.L. Huang, H.Y. Wang, X.N. Xue, and Q.C. Jiang: Effects of distributions of Al, Zn and Al + Zn atoms on the strengthening potency of Mg alloys: A first-principles calculations. Comput. Mater. Sci. 104, 23 (2015).

    CAS  Google Scholar 

  52. L. Zhou, K. Su, Y. Wang, Q. Zeng, and Y. Li: First-principles study of the properties of Li, Al and Cd doped Mg alloys. J. Alloys Compd. 596, 63 (2014).

    CAS  Google Scholar 

  53. N. Hirayama, T. Iida, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si. J. Mater. Res. 30, 2564 (2015).

    CAS  Google Scholar 

  54. Y. Tian and P. Wu: First-principles study of structural, elastic and thermodynamic properties of Ni–Sn–P intermetallics. J. Mater. Res. 32, 512 (2017).

    CAS  Google Scholar 

  55. H. Xiang, Z. Feng, and Y. Zhou: Mechanical and thermal properties of Yb2SiO5: First-principles calculations and chemical bond theory investigations. J. Mater. Res. 29, 1609 (2014).

    CAS  Google Scholar 

  56. B. Wang, Y. Liu, and J.W. Ye: First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure. Acta Phys. Sin. 61, 186501 (2012).

    Google Scholar 

  57. Y.Z. Liu, J.D. Xing, H.G. Fu, Y.F. Li, L. Sun, and L. Zheng: Structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. Phys. Lett. A 381, 2048 (2017).

    Google Scholar 

  58. X.Y. Chong, Y.H. Jiang, R. Zhou, and J. Feng: Multialloying effect on thermophysical properties of Cr7C3-type carbides. J. Am. Ceram. Soc. 100, 1588 (2017).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under grant (51475005, 51775006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanguang Fu or Ruzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Fu, H., Lin, J. et al. The stability, mechanical properties, electronic structures and thermodynamic properties of (Ti, Nb)C compounds by first-principles calculations. Journal of Materials Research 33, 495–506 (2018). https://doi.org/10.1557/jmr.2017.440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.440

Navigation