Skip to main content
Log in

Localization of clavulons, prostanoids with antitumor activity, within the Okinawan soft coral Clavularia viridis (alcyonacea, clavulariidae): Preparation of a high-purity Symbiodinium faction using a protease and a detergent

  • Articles
  • Published:
Lipids

Abstract

To investigate the localization of clavulones (CV), prostanoids with antitumor activity, in the Okinawan soft coral Clavularia viridis, we developed a method for the isolation of Symbiodinium cells from the coral, i.e., treatment of a coral homogenate with a protease, pronase F, and a detergent, Nonidet P-40. The conditions for the treatment were optimized by monitoring the morphology microscopically and the amount of chlorophyll in the Symbiodinium fraction (SymF) optically. To evaluate the purity of SymF and a Symbiodinium-free coral fraction (CorF), we analyzed them for proteins and lipids using cultivated Symbiodinium as a reference. TLC of lipids revealed that SymF contained a greater amount of glycolipids, whereas CorF comprised mostly phospholipids. SDS-PAGE of proteins in SymF and CorF revealed their distinct profiles. Thus, we could obtain each fraction with high purity; we reached the conclusion that CV and arachidonic acid, their possible precursor, are localized exclusively in the insoluble fraction of host coral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

CBP:

chlorophyll a-c-binding protein

Chl:

chlorophyll

CorF:

Symbiodinium-free coral fraction

CorHo:

coral homogenate treated with pronase E

CSym:

cultured Symbiodinium

CV:

clavulone(s)

NP-40:

Nonidel P-40

PCP:

peridinin-Chl-binding protein

ppt:

precipitate

sup:

supernatant

SymF:

Symbiodinium fraction

References

  1. Gerwick, W.H., Nagle, D.G., and Proteau, P.J. (1993) Oxylipins from Marine Invertebrates, Top. Curr. Chem. 167, 117–180.

    Article  CAS  Google Scholar 

  2. Gerwick, W.H. (1999). Eicosanoids in Nonmammals, Compr. Nat. Prod. Chem. 1, 207–254.

    Article  CAS  Google Scholar 

  3. König, G.M., and Wright, A.D. (1996) Marine Natural Products Research: Current Directions and Future Potential, Planta Med. 62, 193–211.

    PubMed  Google Scholar 

  4. Faulkner, D.J. (2002) Marine Natural Products, Nat. Prod. Rep. 19, 1–48.

    PubMed  CAS  Google Scholar 

  5. Weinheimer, A.J., and Spraggins, R.L. (1969) The Occurrence of Two New Prostaglandin Derivatives (15-epi-PGA2 and its acetate, methyl ester) in the Gorgonian Plexaura homomalla, Chemistry of Coelenterates. XV, Tetrahedron Lett. 10, 5185–5188.

    Article  Google Scholar 

  6. Kikuchi, H., Tsukitani, Y., Iguchi, K., and Yamada, Y. (1982) Clavulones, New Type of Prostanoids from the Stolonifer Clavularia viridis Quoy and Gaimard, Tetrahedron Lett. 23, 5171–5174.

    Article  CAS  Google Scholar 

  7. Kikuchi, H., Tsukitani, Y., Iguchi, K., and Yamada, Y. (1983) Absolute Stereochemistry of New Prostanoids Clavulone I, II and III, from Clavularia viridis Quoy and Gaimard, Tetrahedron Lett. 24, 1549–1552.

    Article  CAS  Google Scholar 

  8. Baker, B.J., Okuda, R.K., Yu, P.T.K., and Schueur, P.J. (1985) Punaglandins: Halogenated Antitumor Eicosanoids from the Octocoral Telesto riisei, J. Am. Chem. Soc. 107, 2976–2977.

    Article  CAS  Google Scholar 

  9. Gerhart, D.J. (1984) Prostaglandin A2: An Agent of Chemical Defense in the Caribbean Gorgonian Plexaura homomalla, Mar. Ecol. Prog. Ser. 19, 181–187.

    CAS  Google Scholar 

  10. Gerhart, D.J. (1986) Prostaglandin A2 in the Caribbean Gorgonian Plexaura homomalla: Evidence Against Allelopathic and Antifouling Roles, Biochem. Syst. Ecol. 14, 417–421.

    Article  CAS  Google Scholar 

  11. Pawlik, J.R., and Fenical, W. (1989) A Re-evaluation of the Ichthyodeterrent Role of Prostaglandins in the Caribbean Gorgonian Coral Plexaura homomalla, Mar. Ecol. Prog. Ser. 51, 95–98.

    Google Scholar 

  12. Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y. (1986) Bromovulone I and Iodovulone I, Unprecedented Brominated and Iodinated Marine Prostanoids with Antitumour Activity Isolated from the Japanese Stolonifer Clavularia viridis Quoy and Gaimard, J. Chem. Soc. Chem. Commun., 981–982.

  13. Iguchi, K., Kaneta, S., Mori, K., and Yamada, Y. (1987) A New Marine Epoxy Prostanoid with an Antiproliferative Activity from the Stolonifer Clavularia viridis Quoy and Gaimard, Chem. Pharm. Bull. 35, 4375–4376.

    PubMed  CAS  Google Scholar 

  14. Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y. (1985) Chlorovulones, New Halogenated Marine Prostanoids with an Antitumor Activity from the Stolonifer Clavularia viridis Quoy and Gaimard, Tetrahedron Lett. 26, 5787–5790.

    Article  CAS  Google Scholar 

  15. Fukushima, M., Kato, T., Yamada, Y., Kitagawa, I., Kurozumi, S., and Scheuer, P.J. (1985) Inhibition of Tumor Growth by Novel Marine Eicosanoids, Clavulones and Punaglandins, Proc. Am. Assoc. Cancer Res. 26, 249.

    Google Scholar 

  16. Honda, A., Yamamoto, Y., Mori, Y., Yamada, Y., and Kikuchi, H. (1985) Antileukemic Effect of Coral-Prostanoids Clavulones from the Stolonifer Clavularia viridis on Human Myeloid Leukemia (HL-60) Cells, Biochem. Biophys. Res. Commun. 130, 515–523.

    Article  PubMed  CAS  Google Scholar 

  17. Honda, A., Mori, Y., Iguchi, K., and Yamada, Y. (1987) Antiproliferative and Cytotoxic Effects of Newly Discovered Halogenated Coral Prostanoids from the Japanese Stolonifer Clavularia viridis on Human Myeloid Leukemia Cells in Culture, Mol. Pharmacol. 32, 530–535.

    PubMed  CAS  Google Scholar 

  18. Weis, V.M., von Kampen, J., and Levine, R.P. (1998) Techniques for Exploring Symbiosis-Specific Gene Expression in Cnidarian/Algal Associations, in Molecular Approaches to the Study of the Ocean (Cooksey, K.E., ed.), pp. 435–448, Chapman & Hall, London.

    Google Scholar 

  19. Muller-Parker, G., and D'Elia, C.F. (1997) Interactions Between Corals and Their Symbiotic Algae, in Life and Death of Coral Reefs (Birkeland, C., ed.), pp. 96–113, Chapman & Hall, New York.

    Google Scholar 

  20. Fujiwara, S., Yasui, K., Watanabe, K., Wakabayashi, T., Tsuzuki, M., and Iguchi, K. Molecular Phylogenetic Relationships Between Prostanoid-Containing Okinawan Soft Coral, Clavularia viridis, and Non-Prostanoid-Containing Clavularia Species Based on the Ribosomal ITS Sequences, Mar. Biotechnol. 5 (in press).

  21. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  22. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  23. Wagner, H., Hörhammer, L., and Wolff, P. (1961) Dunnschichtechromatographie von Phosphatiden und Glykolipiden, Biochem. Z. 334, 175–184.

    PubMed  CAS  Google Scholar 

  24. Dittmer, J.C., and Lester, R.L. (1964) A Simple, Specific Spray for the Detection of Phospholipids on Thin-Layer Chromatograms, J. Lipid Res. 5, 126–127.

    CAS  Google Scholar 

  25. Nagai, Y., and Isono, Y. (1965) Occurrence of Animal Sulfolipid in the Gametes of Sea Urchins, Jpn. J. Exp. Med. 35, 315–318.

    PubMed  CAS  Google Scholar 

  26. Sato, N., Tsuzuki, M., Matsuda, Y., Ehara, T., Osafune, T., and Kawaguchi, A. (1995) Isolation and Characterization of Mutants Affected in Lipid Metabolism of Chlamydomonas reinhardtii, Eur. J. Biochem. 230, 987–993.

    Article  PubMed  CAS  Google Scholar 

  27. Fukunaga, A., Watanabe, K., Fujiwara, S., Iguchi, K., and Tsuzuki, M. (1999) Quantitative Analysis of Prostanoids with Antitumor Activity in a Soft Coral, Proceedings of 3rd Annual Meeting of Marine Biotechnology, Japanese Society for Marine Biotechnology, Tsukuba (in Japanese).

  28. Jeffrey, S.W. (1972) Preparation and Some Properties of Crystalline Chlorophyll c1 and c2 from Marine Algae, Biochim. Biophys. Acta 279, 15–33.

    PubMed  CAS  Google Scholar 

  29. Bradford M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  30. Corey, E.J., Lansbury, P.T., Jr., and Yamada, Y. (1985) Identification of a New Eicosanoid from in vitro Biosynthetic Experiments with Clavularia viridis. Implications for the Biosynthesis of Clavulones, Tetrahedron Lett. 26, 4171–4174.

    Article  CAS  Google Scholar 

  31. Corey, E.J., d'Alarcao, M., Matsuda, S.P.T., and Lansbury, P.T., Jr. (1987) Intermediacy of 8-(R)-HPETE in the Conversion of Arachidonic Acid to Pre-clavulone A by Clavularia viridis. Implications for the Biosynthesis of Marine Prostanoids, J. Am. Chem. Soc. 109, 289–290.

    Article  CAS  Google Scholar 

  32. Tytler, E.M., and Davies, P.S. (1983) A Method of Isolating Clean and Viable Zooxanthellae by Density Gradient Centrifugation, Limnol. Oceanogr. 26, 1266–1268.

    Article  Google Scholar 

  33. Lesser, M.P., and Shick, J.M. (1989) Effects of Irradiance and Ultraviolet Radiation on Photoadaptation in the Zooxanthellae of Aiptasia pallida: Primary Production, Photoinhibition, and Enzymatic Defenses Against Oxygen Toxicity, Mar. Biol. 102, 243–255.

    Article  Google Scholar 

  34. Gillor, O., Carmeli, S., Rahamim, Y., Fishelson, Z., and Ilan, M. (2000) Immunolocalization of the Toxin Latruculin B Within the Red Sea Sponge Negombata magnifica (Demospongiae, Latrunculiidae), Mar. Biotechnol. 2, 213–223.

    PubMed  CAS  Google Scholar 

  35. Patton, J.S., and Burris, J.E. (1983) Lipid Synthesis and Extrusion of Freshly Isolated Zooxanthellae, Mar. Biol. 75, 131–136.

    Article  CAS  Google Scholar 

  36. Kellogg, R.B., and Patton, J.S. (1983) Lipid Droplets, Medium of Energy Exchange in the Symbiotic Anemone Condylactis gigantea: A Model Coral Polyp, Mar. Biol. 75, 137–149.

    Article  CAS  Google Scholar 

  37. Wallis, J.G., Watts, J.L., and Browse, J. (2002) Polyunsaturated Fatty Acid Synthesis: What Will They Think of Next? Trends Biochem. Sci. 27, 467–473.

    Article  PubMed  CAS  Google Scholar 

  38. Bishop, D.G., Bain, J.M., and Downton, J.S. (1976) Ultrastructure and Lipid Composition of Zooxanthellae from Tridacna maxima, Aust. J. Plant Physiol. 3, 33–40.

    Article  CAS  Google Scholar 

  39. Bishop, D.G., and Kenrick, J.R. (1980) Fatty Acid Composition of Symbiotic Zooxanthellae in Relation to Their Hosts, Lipids 15, 799–804.

    CAS  Google Scholar 

  40. Harland, A.D., Fixter, L.M., Davies, P.S., and Anderson, R.A. (1991) Distribution of Lipids Between the Zooxanthellae and Animal Compartment in the Symbiotic Sea Anemone, Anemonia viridis: Wax Esters, Triglycerides and Fatty Acids, Mar. Biol. 110, 13–19.

    Article  CAS  Google Scholar 

  41. Johnston, M., Yellowlees, D., and Gilmour, I. (1995) Carbon Isotopic Analysis of the Free Fatty Acids in a Tridacnid-Algal Symbiosis: Interpretation and Implications for the Symbiotic Association, Proc. R. Soc. Lond. B 260, 293–297.

    CAS  Google Scholar 

  42. Al-Lihaibi, S., Al-Sofyani, A.A., and Niaz, G.R. (1999) Chemical Composition of Corals in Saudi Red Sea Coast? Oceanol. Acta 21, 495–501.

    Article  Google Scholar 

  43. Yamashiro, H., Oku, H., Higa, H., Chinen, I., and Sakai, K. (1999) Composition of Lipids, Fatty Acids, and Sterols in Okinawan Corals Comp. Biochem. Physiol. B 122, 397–407.

    Article  Google Scholar 

  44. Bythell, J.C., Sharp, V.A., Miller, D., and Brown, B.E. (1995) A Novel Environmentally Regulated 33 kDa Protein from Tropical and Temperate Cnidarian Zooxanthellae, J. Therm. Biol. 20, 15–22.

    Article  CAS  Google Scholar 

  45. Weis, V.M., and Levine, R.P. (1996) Differential Protein Profiles Reflect the Different Lifestyles of Symbiotic and Aposym-biotic Anthopleura elegantissima, a Sea Anemone from Temperate Waters, J. Exp. Biol. 199, 883–892.

    PubMed  Google Scholar 

  46. Stochaj, W.R., and Grossman, A.R. (1997) Differences in the Protein Profiles of Cultured and Endosymbiotic Symbiodinium sp. (Pyrrophyta) from the Anemone Aiptasia pallida (Anthozoa), J. Phycol. 33, 44–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Tsuzuki.

About this article

Cite this article

Hashimoto, N., Fujiwara, S., Watanabe, K. et al. Localization of clavulons, prostanoids with antitumor activity, within the Okinawan soft coral Clavularia viridis (alcyonacea, clavulariidae): Preparation of a high-purity Symbiodinium faction using a protease and a detergent. Lipids 38, 991–997 (2003). https://doi.org/10.1007/s11745-003-1153-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1153-2

Keywords

Navigation