Skip to main content
Log in

Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu-to-Cu bonding to connect through-silicon vias in three-dimensional integrated-circuit packaging is the most important interconnection technology in the next-generation semiconductor industry. Soldering is an economic and fast process in comparison with diffusion bonding methods. Ga has high solubility of up to 20 at.% in the Cu-rich face-centered cubic (FCC) phase and high mobility at moderate temperatures. In this work, an attempt has been made to evaluate Ga-based Cu-to-Cu interconnection by transient liquid-phase (TLP) bonding. The Cu/Ga interfacial reactions at temperatures ranging from 160°C to 300°C were examined. For reactions at temperatures lower than 240°C, the reaction path is Cu/γ 3-Cu9Ga4/θ-CuGa2/liquid, where the γ 3-Cu9Ga4 and θ-CuGa2 phases are thin planar and thick scalloped layers, respectively, while for the reactions at 280°C and 300°C, the scalloped γ 3-Cu9Ga4 phase is the only reaction product. The phase transformation kinetics, reaction mechanisms, and microstructural evolution in the Cu/Ga couples are elaborated. In addition, reactions of Cu/Ga/Cu sandwich couples at 160°C were investigated. The original Cu/liquid/Cu couples isothermally transformed to Cu/γ 3-Cu9Ga4/ θ-CuGa2/γ 3-Cu9Ga4/Cu couples as the reaction progressed. However, cracks were observed in the θ-CuGa2 phase regions after metallographic processing. The brittle θ-CuGa2 phase is undesirable for Ga-based TLP bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Motoyoshi, Proc. IEEE 97 (1), 43 (2009).

  2. J.H. Lau, Microelectron. Int. 28, 8 (2011).

    Article  Google Scholar 

  3. S. Kühne and C. Hierold, Sens. Actuators A 172, 341 (2011).

    Article  Google Scholar 

  4. K.N. Chen, C.S. Tan, A. Fan, and R. Reif, Electrochem. Solid-State Lett. 7, G14 (2004).

    Article  Google Scholar 

  5. C.-T. Ko and K.-N. Chen, Microelectron. Reliab. 50, 481 (2010).

    Article  Google Scholar 

  6. Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, Microelectron. Reliab. 52, 312 (2012).

    Article  Google Scholar 

  7. K. Bobzin, E. Lugscheider, F. Ernst, R. Nickel, N. Bagcivan, D. Parkot, A. Schlegel, S. Ferrara, T. Kashko, and N. Leick, Microsyst. Technol. 14, 1887 (2008).

    Article  Google Scholar 

  8. G. Selvaduray and M. Abtewa, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  9. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  Google Scholar 

  10. W. Zhang, R. Agarwal, P. Limaye and W. Ruythooren, Electronic Components and Technology Conference 2009 (San Diego, CA, 2009), pp. 345–349.

  11. G. Zeng, S. Xue, L. Zhang, and L. Gao, J. Mater. Sci.: Mater. Electron. 22, 565 (2011).

    Google Scholar 

  12. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng.: R: Rep. 44, 1 (2004).

    Article  Google Scholar 

  13. ASM International, ASM Handbook 1992, vol. 3 (Materials Park, OH: ASM International, 1992).

  14. G.O. Cook and C.D. Sorensen, J. Mater. Sci. 46, 5305 (2011).

    Article  Google Scholar 

  15. W.D. Macdonald and T.W. Eagar, Annu. Rev. Mater. Sci. 22, 23 (1992).

    Article  Google Scholar 

  16. F.J.J. Vanloo, Prog. Solid State Chem. 20, 47 (1990).

    Article  Google Scholar 

  17. J.S. Park and J.M. Kim, Materials 3, 264 (2010).

    Article  Google Scholar 

  18. N.S. Stoloff and M.M. Shea, Mater. Sci. Eng. 12, 245 (1973).

    Article  Google Scholar 

  19. C.F. Old and M.G. Nicholas, J. Mater. Sci. 14, 1 (1979).

    Article  Google Scholar 

  20. C.-H. Wang, H.-H. Chen, P.-Y. Li, and P.-Y. Chu, Intermetallics 22, 166 (2012).

    Article  Google Scholar 

  21. M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater. 27, 1167 (1998).

    Google Scholar 

  22. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  Google Scholar 

  23. W.P. Lin, C.H. Sha, and C.C. Lee, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 903 (2012).

    Google Scholar 

  24. R.P. Van Ingen, R.H.J. Fastenau, and E.J. Mittemeijer, J. Appl. Phys. 76, 1871 (1994).

    Article  Google Scholar 

  25. R. Kubiak, J. Less Common Met. 116, 307 (1986).

    Article  Google Scholar 

  26. C.W. Fairhurst and J.B. Cohen, Acta Crystallogr. B 28, 371 (1972).

    Article  Google Scholar 

  27. K. Takemura and H. Fujihisa, Phys. Rev. B 47, 8465(1993).

    Article  Google Scholar 

  28. J.K. Brandon, R.Y. Brizard, W.B. Pearson, and D.J.N. Tozer, Acta Crystallogr. B 33, 527 (1977).

    Article  Google Scholar 

  29. Y. Watanabe, Y. Fujinaga, and H. Iwasaki, Acta Crystallogr. B 39, 306 (1983).

    Article  Google Scholar 

  30. F.J. Garcıa-Garcıa, A.K. Larsson, and S. Furuseth, J. Solid State Chem. 166, 352 (2002).

    Article  Google Scholar 

  31. L. Bosio, J. Chem. Phys. 68, 1221 (1978).

    Article  Google Scholar 

  32. A.E. Gunnaes, A. Olsen, and H. Herø, J. Microsc. 185, 188 (1997).

    Article  Google Scholar 

  33. O.I. Tikhomirova, M.V. Pikunov, I.D. Marchukova, I.N. Tochenova and I.P. Izotova, Soviet Mater. Sci. 5, 355 (1972) (a translation of Fiziko-khimicheskaya mekhanika materialov/Academy of Sciences of the Ukrainian SSR).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-kang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Sk., Cho, Cl. & Chang, Hm. Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. J. Electron. Mater. 43, 204–211 (2014). https://doi.org/10.1007/s11664-013-2721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2721-x

Keywords

Navigation