Skip to main content
Log in

Advances in the study on induced pluripotent stem cells

  • Review
  • Cell Biology
  • Published:
Chinese Science Bulletin

Abstract

Recently, the study on “induced pluripotent stem cells” (iPS cells) has made a great breakthrough, and it is considered as a new milestone in the history of life science. This progress has updated our traditional concepts about pluripotency control, and provided people with a brand-new strategy for somatic cell nuclear reprogramming. In virtue of its availability and stability, this method holds great potential in both biological and clinical research. In order to introduce this rising field of study, this paper starts with an overview of the development of iPS cell establishment, describes the key steps in generating iPS cells, elaborates several relevant scientific issues, and evaluates its current restrictions and promises in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676

    Article  Google Scholar 

  2. Spivakov M, Fisher A G. Epigenetic signatures of stem-cell identity. Nat Rev Genet, 2007, 8(4): 263–271

    Article  Google Scholar 

  3. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature, 2006, 441(7097): 1061–1067

    Article  Google Scholar 

  4. Fujimori T, Kurotaki Y, Miyazaki J, et al. Analysis of cell lineage in two-and four-cell mouse embryos. Development, 2003, 130(21): 5113–5122

    Article  Google Scholar 

  5. Rodolfa K T, Eggan K. A transcriptional logic for nuclear reprogramming. Cell, 2006, 126(4): 652–655

    Article  Google Scholar 

  6. Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 2001, 11(19): 1553–1558

    Article  Google Scholar 

  7. Tada M, Morizane A, Kimura H, et al. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn, 2003, 227(4): 504–510

    Article  Google Scholar 

  8. Cowan C A, Atienza J, Melton D A, et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309(5739): 1369–1373

    Article  Google Scholar 

  9. Yu J, Vodyanik M A, He P, et al. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells, 2006, 24(1): 168–176

    Article  Google Scholar 

  10. Hansis C, Barreto G, Maltry N, et al. Nuclear reprogramming of human somatic cells by xenopus egg extract requires Brg1. Curr Biol, 2004, 14(16): 1475–1480

    Article  Google Scholar 

  11. Taranger C K, Noer A, Sorensen A L, et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell, 2005, 16(12): 5719–5735

    Article  Google Scholar 

  12. Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847

    Article  Google Scholar 

  13. Jiang Y, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893): 41–49

    Article  Google Scholar 

  14. Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119(7): 1001–1012

    Article  Google Scholar 

  15. Guan K, Nayernia K, Maier L S, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440(7088): 1199–1203

    Article  Google Scholar 

  16. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313–317

    Article  Google Scholar 

  17. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1(1): 55–70

    Article  Google Scholar 

  18. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324

    Article  Google Scholar 

  19. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 2007, 25(10): 1177–1181

    Article  Google Scholar 

  20. Qin D, Li W, Zhang J, et al. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res, 2007, 17(11): 959–962

    Article  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861–872

    Article  Google Scholar 

  22. Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920

    Article  Google Scholar 

  23. Takahashi K, Okita K, Nakagawa M, et al. Generation of high quality iPS cells. Neurosci Res, 2007, 58(Suppl 1): S19

    Article  Google Scholar 

  24. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318(5858): 1920–1923

    Article  Google Scholar 

  25. Yamanaka S, Li J, Kania G, et al. Pluripotency of embryonic stem cells. Cell Tissue Res, 2008, 331(1): 5–22

    Article  Google Scholar 

  26. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 2007, 1(1): 39–49

    Article  Google Scholar 

  27. Niwa H, Miyazaki J, Smith A G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000, 24(4): 372–376

    Article  Google Scholar 

  28. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95(3): 379–391

    Article  Google Scholar 

  29. Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 2007, 9(6): 625–635

    Article  Google Scholar 

  30. Avilion A A, Nicolis S K, Pevny L H, et al. Multipotent cell lineages in early mouse development depend on Sox2 function. Genes Dev, 2003, 17(1): 126–140

    Article  Google Scholar 

  31. Ivanova N, Dobrin R, Lu R, et al. Dissecting self-renewal in stem cells with RNA interference. Nature, 2006, 442(7102): 533–538

    Article  Google Scholar 

  32. Rodda D J, Chew J L, Lim L H, et al. Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem, 2005, 280(26): 24731–24737

    Article  Google Scholar 

  33. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113(5): 631–642

    Article  Google Scholar 

  34. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113(5): 643–655

    Article  Google Scholar 

  35. Boyer L A, Lee T I, Cole M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122(6): 947–956

    Article  Google Scholar 

  36. Loh Y H, Wu Q, Chew J L, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006, 38(4): 431–440

    Article  Google Scholar 

  37. Waikel R L, Kawachi Y, Waikel P A, et al. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet, 2001, 28(2): 165–168

    Article  Google Scholar 

  38. Satoh Y, Matsumura I, Tanaka H, et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem, 2004, 279(24): 24986–24993

    Article  Google Scholar 

  39. Cartwright P, McLean C, Sheppard A, et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005, 132(5): 885–896

    Article  Google Scholar 

  40. Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol, 2005, 6(8): 635–645

    Article  Google Scholar 

  41. Li Y, McClintick J, Zhong L, et al. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood, 2005, 105(2): 635–637

    Article  Google Scholar 

  42. Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol, 2006, 26(20): 7772–7782

    Article  Google Scholar 

  43. Moss E G, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol, 2003, 258(2): 432–442

    Article  Google Scholar 

  44. Richards M, Tan S P, Tan J H, et al. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 2004, 22(1): 51–64

    Article  Google Scholar 

  45. Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33(Suppl): 245–254

    Article  Google Scholar 

  46. Inoue K, Ogonuki N, Miki H, et al. Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J Cell Sci, 2006, 119(Pt 10): 1985–1991

    Article  Google Scholar 

  47. Sung L Y, Gao S, Shen H, et al. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet, 2006, 38(11): 1323–1328

    Article  Google Scholar 

  48. Grinnell K L, Yang B, Eckert R L, et al. De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol, 2007, 127(2): 372–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnKui Duan.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2007CB947401) and Chinese National Manned Space Program (Grant No. 921-2)

About this article

Cite this article

Liu, S., Duan, E. Advances in the study on induced pluripotent stem cells. Chin. Sci. Bull. 53, 709–717 (2008). https://doi.org/10.1007/s11434-008-0152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0152-5

Keywords

Navigation