Skip to main content

Advertisement

Log in

Pluripotency of embryonic stem cells

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cells derived from pre-implantation embryos have the potential to differentiate into any cell type derived from the three germ layers of ectoderm (epidermal tissues and nerves), mesoderm (muscle, bone, blood), and endoderm (liver, pancreas, gastrointestinal tract, lungs), including fetal and adult cells. Alone, these cells do not develop into a viable fetus or adult animal because they do not retain the potential to contribute to extraembryonic tissue, and in vitro, they lack spatial and temporal signaling cues essential to normal in vivo development. The basis of pluripotentiality resides in conserved regulatory networks composed of numerous transcription factors and multiple signaling cascades. Together, these regulatory networks maintain ES cells in a pluripotent and undifferentiated form; however, alterations in the stoichiometry of these signals promote differentiation. By taking advantage of this differentiation capacity in vitro, ES cells have clearly been shown to possess the potential to generate multipotent stem and progenitor cells capable of differentiating into a limited number of cell fates. These latter types of cells may prove to be therapeutically viable, but perhaps more importantly, the studies of these cells have led to a greater understanding of mammalian development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrosetti DC, Basilico C, Dailey L (1997) Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17:6321–6329

    PubMed  CAS  Google Scholar 

  • Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    PubMed  CAS  Google Scholar 

  • Anger M, Bryja V, Jirmanova L, Hampl A, Carrington M, Motlik J, Dvorak P, Kubelka M (2003) The appearance of truncated cyclin A2 correlates with differentiation of mouse embryonic stem cells. Biochem Biophys Res Commun 302:825–830

    PubMed  CAS  Google Scholar 

  • Aubert J, Dunstan H, Chambers I, Smith A (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20:1240–1245

    PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    PubMed  CAS  Google Scholar 

  • Bagutti C, Wobus AM, Fassler R, Watt FM (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev Biol 179:184–196

    PubMed  CAS  Google Scholar 

  • Bhagavati S, Xu W (2005) Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun 333:644–649

    PubMed  CAS  Google Scholar 

  • Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 100:998–1003

    PubMed  CAS  Google Scholar 

  • Blyszczuk P, Asbrand C, Rozzo A, Kania G, St-Onge L, Rupnik M, Wobus AM (2004) Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095–1104

    PubMed  CAS  Google Scholar 

  • Boeuf H, Hauss C, Graeve FD, Baran N, Kedinger C (1997) Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Cell Biol 138:1207–1217

    PubMed  CAS  Google Scholar 

  • Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91:189–201

    PubMed  CAS  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    PubMed  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    PubMed  CAS  Google Scholar 

  • Buehr M, Smith A (2003) Genesis of embryonic stem cells. Philos Trans R Soc Lond Biol 358:1397–1402

    PubMed  CAS  Google Scholar 

  • Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239

    PubMed  CAS  Google Scholar 

  • Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896

    PubMed  CAS  Google Scholar 

  • Catena R, Tiveron C, Ronchi A, Porta S, Ferri A, Tatangelo L, Cavallaro M, Favaro R, Ottolenghi S, Reinbold R, Scholer H, Nicolis SK (2004) Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 279:41846–41857

    PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    PubMed  CAS  Google Scholar 

  • Chang KH, Zandstra PW (2004) Quantitative screening of embryonic stem cell differentiation: endoderm formation as a model. Biotechnol Bioeng 88:287–298

    PubMed  CAS  Google Scholar 

  • Chapman G, Remiszewski JL, Webb GC, Schulz TC, Bottema CD, Rathjen PD (1997) The mouse homeobox gene, Gbx2: genomic organization and expression in pluripotent cells in vitro and in vivo. Genomics 46:223–233

    PubMed  CAS  Google Scholar 

  • Choi D, Lee HJ, Jee S, Jin S, Koo SK, Paik SS, Jung SC, Hwang SY, Lee KS, Oh B (2005) In vitro differentiation of mouse embryonic stem cells: enrichment of endodermal cells in the embryoid body. Stem Cells 23:817–827

    PubMed  CAS  Google Scholar 

  • Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne JP, Dani C, Aberdam D (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13:849–853

    PubMed  CAS  Google Scholar 

  • Daley GQ (2007) Gametes from embryonic stem cells: a cup half empty or half full? Science 316:409–410

    PubMed  CAS  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    PubMed  CAS  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    PubMed  CAS  Google Scholar 

  • Damelin M, Sun YE, Sodja VB, Bestor TH (2005) Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8:479–484

    PubMed  CAS  Google Scholar 

  • Dang SM, Zandstra PW (2005) Scalable production of embryonic stem cell-derived cells. Methods Mol Biol 290:353–364

    PubMed  CAS  Google Scholar 

  • Darr H, Mayshar Y, Benvenisty N (2006) Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development 133:1193–1201

    PubMed  CAS  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    PubMed  CAS  Google Scholar 

  • Drab M, Haller H, Bychkov R, Erdmann B, Lindschau C, Haase H, Morano I, Luft FC, Wobus AM (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J 11:905–915

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Fan Y, Melhem MF, Chaillet JR (1999) Forced expression of the homeobox-containing gene Pem blocks differentiation of embryonic stem cells. Dev Biol 210:481–496

    PubMed  CAS  Google Scholar 

  • Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130:4217–4227

    PubMed  CAS  Google Scholar 

  • Fraser ST, Yamashita J, Jakt LM, Okada M, Ogawa M, Nishikawa S (2003) In vitro differentiation of mouse embryonic stem cells: hematopoietic and vascular cell types. Methods Enzymol 365:59–72

    Article  PubMed  Google Scholar 

  • Fujii-Yamamoto H, Kim JM, Arai K, Masai H (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem 280:12976–12987

    PubMed  CAS  Google Scholar 

  • Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK, Mirny LA, Reizis B (2007) Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129:345–357

    PubMed  CAS  Google Scholar 

  • Gardner RL (1985) Clonal analysis of early mammalian development. Philos Trans R Soc Lond Biol 312:163–178

    PubMed  CAS  Google Scholar 

  • Gottlieb DI, Huettner JE (1999) An in vitro pathway from embryonic stem cells to neurons and glia. Cells Tissues Organs 165:165–172

    PubMed  CAS  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411

    PubMed  CAS  Google Scholar 

  • Halban PA (2004) Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat Cell Biol 6:1021–1025

    PubMed  CAS  Google Scholar 

  • Hansson M, Tonning A, Frandsen U, Petri A, Rajagopal J, Englund MC, Heller RS, Hakansson J, Fleckner J, Skold HN, Melton D, Semb H, Serup P (2004) Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53:2603–2609

    PubMed  CAS  Google Scholar 

  • Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS (2006) Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44:1478–1486

    PubMed  CAS  Google Scholar 

  • Hosler BA, Rogers MB, Kozak CA, Gudas LJ (1993) An octamer motif contributes to the expression of the retinoic acid-regulated zinc finger gene Rex-1 (Zfp-42) in F9 teratocarcinoma cells. Mol Cell Biol 13:2919–2928

    PubMed  CAS  Google Scholar 

  • Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, Rose-John S, Hayek A (2004) Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22:522–530

    PubMed  CAS  Google Scholar 

  • Ishii T, Yasuchika K, Fujii H, Hoppo T, Baba S, Naito M, Machimoto T, Kamo N, Suemori H, Nakatsuji N, Ikai I (2005) In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res 309:68–77

    PubMed  CAS  Google Scholar 

  • Kattman SJ, Huber TL, Keller GM (2006) Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    PubMed  CAS  Google Scholar 

  • Kania G, Blyszczuk P, Jochheim A, Ott M, Wobus AM (2004) Generation of glycogen and albumin producing hepatocyte like cells from embryonic stem cells. Biol Chem 385:943–953

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    PubMed  CAS  Google Scholar 

  • Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109:2679–2687

    PubMed  CAS  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    PubMed  CAS  Google Scholar 

  • Kimelman D, Griffin KJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10:350–356

    PubMed  CAS  Google Scholar 

  • Koban MU, Brugh SA, Riordon DR, Dellow KA, Yang HT, Tweedie D, Boheler KR (2001) A distant upstream region of the rat multipartite Na(+)-Ca(2+) exchanger NCX1 gene promoter is sufficient to confer cardiac-specific expression. Mech Dev 109:267–279

    PubMed  CAS  Google Scholar 

  • Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G (2005) Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci USA 102:13170–13175

    PubMed  CAS  Google Scholar 

  • Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:1651–1662

    PubMed  CAS  Google Scholar 

  • Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25:2475–2485

    PubMed  CAS  Google Scholar 

  • Lako M, Lindsay S, Lincoln J, Cairns PM, Armstrong L, Hole N (2001) Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev 103:49–59

    PubMed  CAS  Google Scholar 

  • Lavon N, Yanuka O, Benvenisty N (2004) Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72:230–238

    PubMed  CAS  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679

    PubMed  CAS  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    PubMed  CAS  Google Scholar 

  • Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J, McKercher S, Meerloo J, Muller FJ, Park KI, Butters TD, Dwek RA, Schwartz P, Tong G, Wenger D, Lipton SA, Seyfried TN, Platt FM, Snyder EY (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447

    PubMed  CAS  Google Scholar 

  • Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B (2004) In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47:1442–1451

    PubMed  CAS  Google Scholar 

  • Li J, Pan G, Cui K, Liu Y, Xu S, Pei D (2007) A dominant negative form of mouse Sox2 induces trophectoderm differentiation and progressive polyploidy in mouse ES cells. J Biol Chem 15:15

    CAS  Google Scholar 

  • Lim LS, Loh YH, Zhang W, Li Y, Chen X, Wang Y, Bakre M, Ng HH, Stanton LW (2007) Zic3 is required for maintenance of pluripotency in embryonic stem cells. Mol Biol Cell 18:1348–1358

    PubMed  CAS  Google Scholar 

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    PubMed  CAS  Google Scholar 

  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    PubMed  CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7:93–102

    PubMed  CAS  Google Scholar 

  • Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4:e121

    PubMed  Google Scholar 

  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    PubMed  CAS  Google Scholar 

  • Maguire T, Novik E, Schloss R, Yarmush M (2006) Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 93:581–591

    PubMed  CAS  Google Scholar 

  • Mantel C, Guo Y, Lee MR, Kim MK, Han MK, Shibayama H, Fukuda S, Yoder MC, Pelus LM, Kim KS, Broxmeyer HE (2007) Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109:4518–4527

    PubMed  CAS  Google Scholar 

  • Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouyssegur J, Pages G (2002) Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 115:2075–2085

    PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    PubMed  CAS  Google Scholar 

  • Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037

    PubMed  CAS  Google Scholar 

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7:1191–1204

    PubMed  CAS  Google Scholar 

  • Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y (2003) Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 100:5828–5833

    PubMed  CAS  Google Scholar 

  • Motohashi T, Aoki H, Yoshimura N, Kunisada T (2006) Induction of melanocytes from embryonic stem cells and their therapeutic potential. Pigment Cell Res 19:284–289

    PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schoeler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    PubMed  CAS  Google Scholar 

  • Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    PubMed  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    PubMed  CAS  Google Scholar 

  • Ogawa K, Nishinakamura R, Iwamatsu Y, Shimosato D, Niwa H (2006) Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343:159–166

    PubMed  CAS  Google Scholar 

  • Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D, Morishita Y, Watabe T, Niwa H, Miyazono K (2007) Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J Cell Sci 120:55–65

    PubMed  CAS  Google Scholar 

  • Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60:461–472

    PubMed  CAS  Google Scholar 

  • Okuda A, Fukushima A, Nishimoto M, Orimo A, Yamagishi T, Nabeshima Y, Kuro-o M, Boon K, Keaveney M, Stunnenberg HG, Muramatsu M (1998) UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J 17:2019–2032

    PubMed  CAS  Google Scholar 

  • Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280:5307–5317

    PubMed  CAS  Google Scholar 

  • Park CH, Minn YK, Lee JY, Choi DH, Chang MY, Shim JW, Ko JY, Koh HC, Kang MJ, Kang JS, Rhie DJ, Lee YS, Son H, Moon SY, Kim KS, Lee SH (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276

    PubMed  CAS  Google Scholar 

  • Pfendler KC, Catuar CS, Meneses JJ, Pedersen RA (2005) Overexpression of Nodal promotes differentiation of mouse embryonic stem cells into mesoderm and endoderm at the expense of neuroectoderm formation. Stem Cells Dev 14:162–172

    PubMed  CAS  Google Scholar 

  • Pomp O, Brokhman I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23:923–930

    PubMed  CAS  Google Scholar 

  • Quinn G, Ochiya T, Terada M, Yoshida T (2000) Mouse flt-1 promoter directs endothelial-specific expression in the embyroid body model of embryogenesis. Biochem Biophys Res Commun 276:1089–1099

    PubMed  CAS  Google Scholar 

  • Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299:363

    PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    PubMed  CAS  Google Scholar 

  • Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    PubMed  CAS  Google Scholar 

  • Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 164:87–101

    PubMed  CAS  Google Scholar 

  • Rolletschek A, Kania G, Wobus AM (2006) Generation of pancreatic insulin-producing cells from embryonic stem cells—“proof of principle”, but questions still unanswered. Diabetologia 49:2541–2545

    PubMed  CAS  Google Scholar 

  • Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309–322

    PubMed  CAS  Google Scholar 

  • Schoeler HR, Balling R, Hatzopoulos AK, Suzuki N, Gruss P (1989) Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8:2551–2557

    CAS  Google Scholar 

  • Schoeler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P (1990) New type of POU domain in germ line-specific protein Oct-4. Nature 344:435–439

    CAS  Google Scholar 

  • Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM (2006) Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc 1:495–507

    PubMed  CAS  Google Scholar 

  • Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM, Kaufman DS (2005) Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev 14:643–655

    PubMed  CAS  Google Scholar 

  • Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    PubMed  CAS  Google Scholar 

  • Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H (2005) Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23:656–662

    PubMed  CAS  Google Scholar 

  • Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells derived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20:284–292

    PubMed  CAS  Google Scholar 

  • Singla DK, Schneider DJ, LeWinter MM, Sobel BE (2006) wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem Biophys Res Commun 345:789–795

    PubMed  CAS  Google Scholar 

  • Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    PubMed  CAS  Google Scholar 

  • Snow MH, Bennett D (1978) Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol 47:39–52

    PubMed  CAS  Google Scholar 

  • Soria B (2001) In-vitro differentiation of pancreatic beta-cells. Differentiation 68:205–219

    PubMed  CAS  Google Scholar 

  • Soto-Gutierrez A, Navarro-Alvarez N, Zhao D, Rivas-Carrillo JD, Lebkowski J, Tanaka N, Fox IJ, Kobayashi N (2007) Differentiation of mouse embryonic stem cells to hepatocyte-like cells by co-culture with human liver nonparenchymal cell lines. Nat Protoc 2:347–356

    PubMed  CAS  Google Scholar 

  • Sutton J, Costa R, Klug M, Field L, Xu D, Largaespada DA, Fletcher CF, Jenkins NA, Copeland NG, Klemsz M, Hromas R (1996) Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells. J Biol Chem 271:23126–23133

    PubMed  CAS  Google Scholar 

  • Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374

    PubMed  CAS  Google Scholar 

  • Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Patestos NP, Maekawa T, Ishii S (1999) B-myb is required for inner cell mass formation at an early stage of development. J Biol Chem 274:28067–28070

    PubMed  CAS  Google Scholar 

  • Teratani T, Yamamoto H, Aoyagi K, Sasaki H, Asari A, Quinn G, Terada M, Ochiya T (2005) Direct hepatic fate specification from mouse embryonic stem cells. Hepatology 41:836–846

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  • Troy TC, Turksen K (2005) Commitment of embryonic stem cells to an epidermal cell fate and differentiation in vitro. Dev Dyn 232:293–300

    PubMed  CAS  Google Scholar 

  • Vaca P, Martin F, Vegara-Meseguer JM, Rovira JM, Berna G, Soria B (2006) Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells 24:258–265

    PubMed  CAS  Google Scholar 

  • Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK, Scadden DT (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25:317–318

    PubMed  CAS  Google Scholar 

  • Weitzer G (2005) Embryonic stem cell-derived embryoid bodies: an in vitro model of eutherian pregastrulation development and early gastrulation. Handb Exp Pharmacol 174:21–51

    Article  Google Scholar 

  • Wiles MV, Johansson BM (1997) Analysis of factors controlling primary germ layer formation and early hematopoiesis using embryonic stem cell in vitro differentiation. Leukemia 11 (Suppl 3):454–456

    PubMed  Google Scholar 

  • Wiles MV, Keller G (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267

    PubMed  CAS  Google Scholar 

  • Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    PubMed  CAS  Google Scholar 

  • Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    PubMed  CAS  Google Scholar 

  • Wobus AM, Guan K, Yang H-T, Boheler KR (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle and vascular smooth muscle cell differentiation. In: Turksen K (ed) Methods in molecular biology, vol 185. Humana, Totowa, N.J., pp 127–156

    Google Scholar 

  • Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM, Orkin SH (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Quinn G, Asari A, Yamanokuchi H, Teratani T, Terada M, Ochiya T (2003) Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 37:983–993

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Teratani T, Yamamoto H, Quinn G, Murata S, Ikeda R, Kinoshita K, Matsubara K, Kato T, Ochiya T (2005) Recapitulation of in vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology 42:558–567

    PubMed  CAS  Google Scholar 

  • Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    PubMed  CAS  Google Scholar 

  • Yu L, Sangster N, Perez A, McCormick PJ (2004) The bHLH protein MyoR inhibits the differentiation of early embryonic endoderm. Differentiation 72:341–347

    PubMed  CAS  Google Scholar 

  • Yuasa S, Itabashi Y, Koshimizu U, Tanaka T, Sugimura K, Kinoshita M, Hattori F, Fukami S, Shimazaki T, Ogawa S, Okano H, Fukuda K (2005) Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol 23:607–611

    PubMed  CAS  Google Scholar 

  • Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940

    PubMed  CAS  Google Scholar 

  • Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123

    PubMed  CAS  Google Scholar 

  • Zhou QJ, Xiang LX, Shao JZ, Hu RZ, Lu YL, Yao H, Dai LC (2007) In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem 100:29–42

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Boheler.

Additional information

We thank the IPK Gatersleben, the Deutsche Forschungsgemeinschaft (DFG; WO 503/3-2), the Ministry of Education and Research (BMBF), and the Fonds der Chemischen Industrie (FCI), Germany (to A.M.W.), plus the Intramural Research program of the National Institute on Aging (NIH/IRP, to K.R.B.) for funding our stem cell projects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, S., Li, J., Kania, G. et al. Pluripotency of embryonic stem cells. Cell Tissue Res 331, 5–22 (2008). https://doi.org/10.1007/s00441-007-0520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0520-5

Keywords

Navigation