Skip to main content
Log in

Phytotoxicity of natural soils using physiological and biochemical endpoints reveals confounding factors: can a weight of evidence tackle uncertainty?

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Standard assays for phytotoxicity provide a reductionist view on the performance of plants under toxic stress. To address two of the most prominent issues in plant toxicity studies, our aims were (1) to assess how well physiological and biochemical parameters complement standard toxicological endpoints when testing natural soils and (2) to assess the suitability of three commonly used control soils as comparative references.

Material and methods

We compared the performance of Zea mays and Helianthus annuus in three control soils (artificial Organisation for Economic Co-operation and Development (OECD) soil, standard LUFA 2.2 soil, and turf-perlite) against three natural soils representing a gradient of contamination (from a deactivated uranium mine). Standard endpoints (emergence and biomass) were estimated, along with pigment content, photosynthetic parameters, cellular injury, and proline content.

Results and discussion

The toxicological profile of natural soils was highly dependent on the control soil used as reference; also, plant physiological performance was influenced by the soils’ properties. We discuss the need to interpret and combine multiple lines of evidence as a way to increase the degree of confidence one classifies soils based on their ecotoxicity, and this is where the integration of physiological and biochemical parameters bring added value.

Conclusions

When facing large variability in soil characteristics, it is best to collect and integrate as much information possible to strengthen conclusions about phytotoxicity of natural soils. Obviously, this refutes reductionist views and places the final conclusion in the hands of expert judgment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291(1–3):1–32

    Article  CAS  Google Scholar 

  • Ali S, Zeng F, Qiu L, Zhang G (2004) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55(2):291–296

    Article  Google Scholar 

  • Amorim M, Römbke J, Scheffczyk A, Nogueira AJ, Soares AMVM (2005) Effects of different soil types on the Collembolans Folsomia candida and Hypogastrura assimilis using the herbicide phenmedipham. Arch Environ Contam Toxicol 49(3):343–52

    Article  CAS  Google Scholar 

  • An YJ, Kim YM, Kwon TI, Jeong SW (2004) Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 326:85–93

    Article  CAS  Google Scholar 

  • Antunes SC, Pereira R, Gonçalves F (2007) Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch Environ Contam Toxicol 53:207–213

    Article  CAS  Google Scholar 

  • Antunes SC, Castro BB, Pereira R, Gonçalves F (2008a) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390(2–3):387–395

    Article  CAS  Google Scholar 

  • Antunes SC, Castro BB, Nunes B, Pereira R, Gonçalves F (2008b) In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine. Ecotoxicol Environ Saf 71:620–631

    Article  CAS  Google Scholar 

  • Antunes SC, Pereira R, Marques SM, Castro BB, Gonçalves F (2011) Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. Sci Total Environ 410:87–95

    Article  Google Scholar 

  • Antunes SC, Castro BB, Moreira C, Gonçalves F (2013) Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence. Ecotoxicol Environ Saf 88:65–71

    Article  CAS  Google Scholar 

  • Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 16(1–4):211–219

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Brain RA, Cedergreen N (2009) Biomarkers in aquatic plants: selection and utility. Rev Environ Contam Toxicol 198:49–109

    Google Scholar 

  • Breure T, Peijnenburg W (2003) Developments in soil protection in the Netherlands. J Soils Sediments 3(4):248–249

    Article  Google Scholar 

  • Caetano AL, Gonçalves F, Sousa JP, Cachada A, Pereira E, Duarte AC, Ferreira da Silva E, Pereira R (2012) Characterization and validation of a Portuguese natural reference soil to be used as substrate for ecotoxicological purposes. J Environ Monit 14:925–936

    Article  CAS  Google Scholar 

  • Chelinho S, Domene X, Campana P, Natal-da-Luz T, Scheffczyk A, Römbke J, Andrés P, Sousa JP (2011) Improving ecological risk assessment in the Mediterranean area: selection of reference soils and evaluating the influence of soil properties on avoidance and reproduction of two oligochaete species. Environ Toxicol Chem 30(5):1050–1058

    Article  CAS  Google Scholar 

  • Correia B, Pintó-Marijuan M, Neves L, Dias MC, Brossa R, Castro BB, Araújo C, Costa A, Chaves MM, Santos C, Pinto G (2014) Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiol Plant 150(4):580–592

    Article  CAS  Google Scholar 

  • Elkahoui S, Hernández JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Ernst WHO, Peterson PJ (1994) The role of biomarkers in environmental assessment (4). Terrestrial plants. Ecotoxicology 3(3):180–192

    Article  CAS  Google Scholar 

  • FAOUN (1984) Food and Agriculture Organization of the United Nations—physical and chemical methods of soil and water analysis. Soils Bull 10:1–275

    Google Scholar 

  • Frankenbach S, Scheffczyk A, Jänsch S, Römbke J (2014) Duration of the standard earthworm avoidance test: are 48 h necessary? Appl Soil Ecol 83:238–246

    Article  Google Scholar 

  • Gavina A, Antunes SC, Pinto G, Claro MT, Santos C, Gonçalves F, Pereira R (2013) Can physiological endpoints improve the sensitivity of assays with plants in the risk assessment of contaminated soils? PLoS ONE 8(4):e59748

    Article  CAS  Google Scholar 

  • Gawlik BM, Lamberty A, Pauwels J, Blum WE, Mentler A, Bussian B, Eklo O, Fox K, Kördel W, Hennecke D, Maurer T, Perrin-Ganier C, Pflugmacher J, Romero-Taboada E, Szabo G, Muntau H (2003) Certification of the European reference soil set (IRMM-443—EUROSOILS). Part I. Adsorption coefficients for atrazine, 2,4-D and lindane. Sci Total Environ 312(1–3):23–31

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Gomes SIL, Scott-Fordsmand JJ, Amorim MJB (2014) Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. Environ Pollut 186:75–82

    Article  CAS  Google Scholar 

  • Gong P, Wilke B, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36(2):152–157

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Hirayma T, Shinozaky K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal 61(6):1041–1052

  • Hofman J, Hovorková I, Machát J (2009) Comparison and characterization of OECD artificial soils. In: Moser H, Römbke J (eds) Ecotoxicological characterization of waste: results and experiences from an European ring test, pp 223–229

  • Hund-Rinke K, Achaz R, Römbke J, Warnecke D (2003) Avoidance test with Eisenia fetida as indicator for the habitat function of soils: results of a laboratory comparison test. J Soils Sediments 3(1):7–12

    Article  CAS  Google Scholar 

  • ISO (1995) Soil quality—determination of the effects of polluants on soil flora. Part 2: effect of chemicals on the emergence and growth of higher plants. ISO—The International Organization for Standardization, Geneve. ISO 11269–2:7

  • ISO (2005) Soil quality—avoidance test for testing the quality of soils and the toxicity of chemicals—test with earthworms (Eisenia fetida). International Organization for Standardization, Geneva

    Google Scholar 

  • Kalsch W, Junker T, Römbke J (2006) A chronic plant test for the assessment of contaminated soils. Part 2: testing of contaminated soils. J Soils Sediments 6(2):92–101

    Article  CAS  Google Scholar 

  • Keurentjes JJB, Angenent GC, Dicke M, Dos Santos VAPM, Molenaar J, van der Putten WH, de Ruiter PC, Struik PC, Thomma BPHJ (2011) Redefining plant systems biology: from cell to ecosystem. Trends Plant Sci 16(4):183–190

    Article  CAS  Google Scholar 

  • Lagadic L, Caquet T, Ramade F (1994) The role of biomarkers in environmental assessment (5). Invertebrate populations and communities. Ecotoxicology 3(3):193–208

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira R, Pinto F, Caetano T, Silva A, Carvalheiro T, Guimarães A, Gonçalves F, Paiva A, Mendo S (2013) Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 305:89–98

    Article  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Marques SM, Antunes SC, Pissarra H, Pereira ML, Gonçalves F, Pereira R (2009) Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquat Toxicol 91(2):187–195

    Article  CAS  Google Scholar 

  • Monteiro MS, Santos C, Soares AMVM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72(3):811–818

    Article  CAS  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ Knowl 4(8):2

    Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43(2):203–213

    Article  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13(5):549–561

    Article  CAS  Google Scholar 

  • Nunes B, Pinto G, Martins L, Gonçalves F, Antunes SC (2014) Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba. Environ Sci Pollut Res 21:10815–10822

  • OECD (1984) OECD Guideline for the testing of chemicals: 208 Terrestrial plants, growth test. Organization for Economic Co-operation and Development, France. Paris, France

  • OECD (2004) OECD Guideline for the testing of chemicals: earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD/OCED no 222

  • OECD (2006) Terrestrial plant test: seedling emergence and seedling growth test OECD/OCED no 208

  • O'Halloran K (2006) Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Hum Ecol Risk Assess 12(1):74–83

    Article  Google Scholar 

  • Peakall DW (1992) Animal biomarkers as pollution indicators. Chapman & Hall, London

    Book  Google Scholar 

  • Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier I of the ecological risk assessment of Cunha Baixa uranium mine (Central Portugal). I. Soil chemical characterization. Sci Total Environ 390:377–386

    Article  CAS  Google Scholar 

  • Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220

    Article  Google Scholar 

  • Pereira R, Barbosa S, Carvalho FP (2014) Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts. Environ Geochem Health 36(2):285–301

    Article  CAS  Google Scholar 

  • Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2(3):278–282

    Article  Google Scholar 

  • Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38(5):3437–46

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, p 537

    Book  Google Scholar 

  • Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnaß H-J (2006) The effect of tributyltin-oxide on earthworms, springtails, and plants in artificial and natural soils. Arch Environ Contam Toxicol 52:525–534

    Article  Google Scholar 

  • Rutgers M, Faber JH, Postma J, Eijsackers H (2000) Site-specific ecological risks: a basic approach to function-specific assessment of soil pollution. Reports of the Programme on Integrated Soil Research. P. B. S. Research, Wageningen

    Google Scholar 

  • Sanchez-Hernandez JC (2011) Pesticide biomarkers in terrestrial invertebrates, pesticides in the modern world—pests control and pesticides exposure and toxicity assessment, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-457-3, InTech, Available from: http://www.intechopen.com/books/pesticides-in-themodern-world-pests-control-and-pesticides-exposure-and-toxicity-assessment/pesticide-biomarkers-interrestrial-invertebrates

  • Santos C (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103(1):93–99

    Article  CAS  Google Scholar 

  • Scheffczyk A, Frankenbach S, Jänsch S, Römbke J (2014) Comparison of the effects of zinc nitrate-tetrahydrate and tributyltin-oxide on the reproduction and avoidance behavior of the earthworm Eisenia andrei in laboratory tests using nine soils. Appl Soil Ecol 83:253–257

    Article  Google Scholar 

  • Seiter S, Horwat WR (2004) Strategies for managing soil organic matter to supply plant nutrients. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press

  • Shao H, Huang X, Zhang Y, Zhang C (2013) Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops. Molecules 18:2623–2634

    Article  CAS  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • SPAC (2000) Soil and plant analysis council—handbook of reference methods. CRC Press, Boca Raton

    Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedologia 40:80–96

    CAS  Google Scholar 

  • Sunahara GI, Robidoux PY, Gong P, Lachance B, Rocheleau S, Dodard SG, Sarrazin M, Hawari J, Thiboutout S, Ampleman G, Renoux AY (2000) Laboratory and field approaches to characterize the soil ecotoxicology of polynitro explosives. In: Greenberg BM, Hull RN, Roberts MH, Gensemer RW (eds) Environmental toxicology and risk assessment: science, policy and standardization—implications for environmental decisions. American Society for Testing and Materials, West Conshoshocken, pp 293–312

    Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:47–150

    Google Scholar 

  • Van Straalen NM (2002) Assessment of soil contamination—a functional perspective. Biodegradation 13(1):41–52

    Article  Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wang X-F, Zhou Q-X (2005) Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere 60:16–21

    Article  CAS  Google Scholar 

  • Weeks JM, Comber SDW (2005) Ecological risk sssessment of contaminated soil. Mineral Mag 69(5):601–613

    Article  CAS  Google Scholar 

  • Weeks JM, Sorokin N, Johnson I, Whitehouse P, Ashton D, Spurgeon D, Hankard P, Svendsen C, Hart A (2004) Biological test methods for assessing contaminated land, stage 2—a demonstration of the use of a framework for the ecological risk assessment of land contamination. Environmental Agency Science Report P5-069/TR1

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    Article  CAS  Google Scholar 

  • Yu X-Z, Gu J-D, Huang S-Z (2007) Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology 16:299–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013 and UID/AMB/50017/2013. Maria Celeste Dias and Glória Pinto were supported by FCT by means of a post-doctoral grant (SFRH/BPD/100865/2014 and SFRH/BPD/101669/2014, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara C. Antunes.

Additional information

Responsible editor: Caixian Tang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, S.C., Castro, B.B., Dias, M.C. et al. Phytotoxicity of natural soils using physiological and biochemical endpoints reveals confounding factors: can a weight of evidence tackle uncertainty?. J Soils Sediments 16, 785–800 (2016). https://doi.org/10.1007/s11368-015-1306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1306-0

Keywords

Navigation