Skip to main content
Log in

The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources

  • Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Alford ÉR, Pilon-Smits EAH, Fakra SC, Paschke MW (2012) Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis. Am J Bot 99:1930–1941. doi:10.3732/ajb.1200124

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Springer

  • Anastas PT, Warner JC (1998) Principles of green chemistry. Green Chem Theory Pr 29–56

  • Dorken G, Ferguson GP, French CE, Poon WCK (2012) Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. 3490–3502.

  • Escande V, Garoux L, Grison C et al (2013a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B Environ. doi:10.1016/j.apcatb.2013.04.011

    Google Scholar 

  • Escande V, Olszewski TK, Grison C (2013b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction. C R Chim. doi:10.1016/j.crci.2013.09.009

    Google Scholar 

  • Escande V, Olszewski TK, Petit E, Grison C (2014) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. ChemSusChem. doi:10.1002/cssc.201400078

    Google Scholar 

  • Escarré J, Lefèbvre C, Raboyeau S et al (2010) Heavy metal concentration survey in soils and plants of the les malines mining district (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi:10.1007/s11270-010-0547-1

    Article  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W et al (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65. doi:10.1007/s11104-005-5315-4

    Article  Google Scholar 

  • Grison C, Escande V (2012) Utilisation de certaines plantes accumulatrices de manganese pour la mise en œuvre de reactions de chimie organique

  • Grison C, Escande V (2013) Utilisation de certaines plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique

  • Grison C, Escande V (2014) Use of certain metal-accumulating plants for the performance of organic chemistry reactions

  • Grison C, Escarre J (2011) Use of metal-accumulating plants for the preparation of catalysts that can be used in chemical reactions

  • Grison C, Hosy F, Grison C et al (2010) Thlaspi caerulescens, un indicateur de la pollution d’un sol? Réflexion partagée entre étudiants et chercheurs autour d’un problème environnemental. Actual Chim 27–32

  • Grison C, Escande V, Petit E et al (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. Rsc Adv 3:22340–22345. doi:10.1039/C3RA43995J

    Article  CAS  Google Scholar 

  • Grison CM, Jackson S, Merlot S et al (2014a) Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Submitted

  • Grison CM, Renard B-L, Grison C (2014b) A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress. Bioorg Chem 52:50–55. doi:10.1016/j.bioorg.2013.11.006

    Article  CAS  Google Scholar 

  • Kalsi PS (2007) Organic reactions stereochemistry and mechanism (Through Solved Problems). New Age International

  • L’Huillier L, Jaffré T, Wulff A (2010) Mines et environnement en Nouvelle-Calédonie: les milieux sur substrats ultramafiques et leur restauration. Éd. IAC

  • Li Y-M, Chaney R, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. doi:10.1023/A:1022527330401

    Article  CAS  Google Scholar 

  • Losfeld G, de La Blache PV, Escande V, Grison C (2012a) Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev 5:451–456. doi:10.1080/17518253.2012.667157

    Article  CAS  Google Scholar 

  • Losfeld G, Escande V, Jaffré T et al (2012b) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910. doi:10.1016/j.chemosphere.2012.05.004

    Article  CAS  Google Scholar 

  • Losfeld G, Escande V, Vidal de La Blache P et al (2012c) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel–Crafts alkylation and acylation. Catal Today 189:111–116. doi:10.1016/j.cattod.2012.02.044

    Article  CAS  Google Scholar 

  • Losfeld G, Escande V, Mathieu T, Grison C (2013) Phytoextraction et biodégradation dynamisée: une approche interdisciplinaire inventive au service de l’environnement. Tech Ingénieur Innov En Environ. Base documentaire: TIB517DUO

  • Mahieu S, Soussou S, Cleyet-Marel J-C et al (2013) Local adaptation of metallicolous and non-metallicolous Anthyllis vulneraria populations: their utilization in soil restoration: adaptation of a legume to metalliferous soils. Restor Ecol 21:551–559. doi:10.1111/j.1526-100X.2012.00927.x

    Article  Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Soil Environ 29:91–109

    CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126. doi:10.1007/s11270-007-9401-5

    Article  CAS  Google Scholar 

  • Pajuelo E, Carrasco JA, Romero LC et al (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (Thiol) lyase under metal stress. Plant Biol 9:672–681

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. John Wiley and Sons

  • Robinson B, Fernández J-E, Madejón P et al (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125. doi:10.1023/A:1022586524971

    Article  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  Google Scholar 

  • Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273. doi:10.1039/b713736m

    Article  CAS  Google Scholar 

  • Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 3352. doi:10.1039/b803584a

  • Singh OV, Labana S, Pandey G et al (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412. doi:10.1007/s00253-003-1244-4

    Article  CAS  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Vidal C, Chantreuil C, Berge O et al (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855. doi:10.1099/ijs.0.003327-0

    Article  CAS  Google Scholar 

  • Vogel AI, Tatchell AR, Furnis BS et al (1996) Vogel’s textbook of practical organic chemistry, 5th edn. Prentice Hall, Harlow

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. doi:10.1016/S0045-6535(02)00232-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Agence Nationale de la Recherche (ANR 11ECOT 011 01), Centre National de la Recherche Scientifique (CNRS), Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME), and Fond Européen de Développement Régional (FEDER) program for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Grison.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grison, C.M., Mazel, M., Sellini, A. et al. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ Sci Pollut Res 22, 5667–5676 (2015). https://doi.org/10.1007/s11356-014-3605-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3605-1

Keywords

Navigation