Skip to main content
Log in

Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three Pseudomonas species isolated from oil polluted soils in Lagos, Nigeria were studied for their pyrene degradation potentials. These isolates exhibited broad substrate specificities for hydrocarbon substrates including polycyclic aromatic hydrocarbons, petroleum fractions and chlorobenzoates. All three isolates tolerated salt concentrations of more than 3%. They resisted ampicillin, cenfuroxime, but susceptible to ofloxacin and ciprofloxacin. Pseudomonas sp. strain LP1 exhibited growth rates and pyrene degradation rates of 0.018 h−1 and 0.111 mg l−1 h−1 respectively, while P. aeruginosa strains LP5 and LP6 had corresponding values of 0.024, 0.082 and 0.017, 0.067 respectively. The overall respective percentage removal of pyrene obtained for strains LP1, LP5 and LP6 after a 30-day incubation period were 67.79, 66.61 and 47.09. Resting cell assay revealed that strain LP1 had the highest uptake rate. Strains LP1, LP5, and LP6 also used the ortho-cleavage pathway. Enzyme study confirmed activity of catechol 1,2-dioxygenase in all with values 0.6823, 0.9199, and 0.8344 μmol min−1 mg−1 respectively for LP1, LP3 and LP6. To the best of our knowledge, ours is the first report of pyrene-degraders from the sub-Saharan African environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C, Grindle N (2007a) Growth on dichlorobipenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils. Appl Microbiol Biotechnol 74:484–492. doi:10.1007/s00253-006-0651-8

    Article  CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007b) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159. doi:10.1007/s11274-007-9345-3

    Article  CAS  Google Scholar 

  • Amund OO, Adewale AA, Ugoji EO (1987) Occurrence and characterisation of hydrocarbon utilising bacteria in Nigerian soils contaminated with spent motor oil Ind. J Microbiol 27:63–87

    Google Scholar 

  • Barrow GI, Feltham RKA (1995) Cowan and Steel’s manual for identification of medical bacteria, 3rd edn. Cambridge, Cambridge University

    Google Scholar 

  • Bauchop T, Elsden SR (1960) The growth of microorganisms in relation to their energy. J Gen Microbiol 23:457–459

    CAS  Google Scholar 

  • Boldrin B, Thiem A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by Mycobacterium sp. Appl Environ Microbiol 59:1927–1930

    CAS  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164. doi:10.1007/BF00170638

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Caldini G, Cenci G, Manenti R, Morozzi G (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilise chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44:225–229. doi:10.1007/BF00164506

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368. doi:10.1007/BF00129093

    Article  CAS  Google Scholar 

  • Chander Y, Kumar K, Goyal SM, Gupta SC (2005) Antibacterial activity of soil bound antibiotics. J Environ Qual 34:1952–1957. doi:10.2134/jeq2005.0017

    Article  CAS  Google Scholar 

  • Cheung P-Y, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralisation in petroleum-contaminated soil. Appl Environ Microbiol 67:2222–2229. doi:10.1128/AEM.67.5.2222-2229.2001

    Article  CAS  Google Scholar 

  • Churchill SA, Harper JP, Churchill PF (1999) Isolation and characterisation of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons. Appl Environ Microbiol 65:549–552

    CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strain; role of biosurfactants in enhancing bioavailability. J Appl Microbiol 102:195–203. doi:10.1111/j.1365-2672.2006.03070.x

    Article  CAS  Google Scholar 

  • Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312. doi:10.1007/s002530050822

    Article  CAS  Google Scholar 

  • Derz K, Klinner U, Schupan I et al (2004) Mycobacterium pyrenivorans sp nov a novel polycyclic aromatic hydrocarbon degrading sp. Int J Syst Evol Microbiol 54:2313–2317. doi:10.1099/ijs.0.03003-0

    Article  CAS  Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo(a)pyrene and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  Google Scholar 

  • Heitkamp MA, Franklin W, Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555

    CAS  Google Scholar 

  • Ilori MON, Amund OO (2000) Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z Naturforsch [C] 55:890–897

    CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84. doi:10.1016/j.envpol.2004.04.015

    Article  CAS  Google Scholar 

  • Juhasz AL, Britz ML, Stanley GA (1997) Degradation of fluoranthene, pyrene, benz(a)anthracene and dibenz(a, h)anthracene by Burkholderia cepacia. J Appl Microbiol 83:189–198. doi:10.1046/j.1365-2672.1997.00220.x

    Article  CAS  Google Scholar 

  • Ka-Leung N, Neidle EL, Ornston CN (1990) Catechol and chlorocatechol 1, 2 dioxygenase. Methods Enzymol 188:122–126. doi:10.1016/0076-6879(90)88022-3

    Article  Google Scholar 

  • Kanaly R, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067. doi:10.1128/JB.182.8.2059-2067.2000

    Article  CAS  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterisation of the soil microflora from hydrocarbon-contaminated soil sites able to mineralise polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 41:267–273. doi:10.1007/BF00186971

    Article  Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362

    CAS  Google Scholar 

  • Kataeva TA, Golovleva LA (1990) Catechol 2, 3 dioxygenase. Methods Enzymol 188:115–121. doi:10.1016/0076-6879(90)88021-2

    Article  CAS  Google Scholar 

  • Kazunga C, Aitken MD (2000) Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66:1917–1922. doi:10.1128/AEM.66.5.1917-1922.2000

    Article  CAS  Google Scholar 

  • Kim YH, Freeman JP, Moody JD et al (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285. doi:10.1007/s00253-004-1796-y

    Article  CAS  Google Scholar 

  • Krivobok S, Kuony S, Meyer C et al (2003) Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PYI: evidence of two ring-hydroxylating dioxygenase. J Bacteriol 185:3828–3841

    Article  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H et al (2001) Colorimetric assay for lindane dechlorination by bacteria. J Microbiol Methods 47:181–188. doi:10.1016/S0167-7012(01)00299-8

    Article  CAS  Google Scholar 

  • Rothera ACH (1908) Note on the sodium nitroprussie reaction for acetone. J Physiol 37:491–492

    CAS  Google Scholar 

  • Sarma PM, Bhattacharya D, Krishnan S et al (2004) Degradation of Polycyclic aromatic hydrocarbon by a newly discovered entereic bacteria Leclercia adecarboxylata. Appl Environ Microbiol 70:3163–3166. doi:10.1128/AEM.70.5.3163-3166.2004

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K et al (1996) Degradation of pyrene, benzo(a)anthracene, and benzo(a)pyrene by Mycobacterium sp strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4(3):159–182. doi:10.1046/j.1462-2920.2002.00283.x

    Article  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic Pseudomonads, a taxonomic study. J Gen Microbiol 43:159–271

    CAS  Google Scholar 

  • Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes and fluorenes by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61:357–362

    CAS  Google Scholar 

  • Thibault SI, Anderson M, Frankenberger WI Jr (1996) Influence of surfactants on pyrene desorption and degradation in soil. Appl Environ Microbiol 62:283–287

    CAS  Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476

    Article  CAS  Google Scholar 

  • Vila J, Lopez Z, Sabate J et al (2001) Identification of a novel metabolite of pyrene by Mycobacterium sp. strain API: action of the isolate on two and three ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5555

    Article  CAS  Google Scholar 

  • Wackett LP, Hershberger LCD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM Press, Washington

    Google Scholar 

  • Walter U, Beyer M, Klein J et al (1991) Degradation of pyrene by Rhodococcus sp UW1. Appl Microbiol Biotechnol 34:671–676. doi:10.1007/BF00167921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwafemi S. Obayori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obayori, O.S., Ilori, M.O., Adebusoye, S.A. et al. Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J Microbiol Biotechnol 24, 2639–2646 (2008). https://doi.org/10.1007/s11274-008-9790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9790-7

Keywords

Navigation