Skip to main content
Log in

Aerobic degradation of 2,4-dichlorophenoxyacetic acid and other chlorophenols by Pseudomonas strains indigenous to contaminated soil in South Africa: Growth kinetics and degradation pathway

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Three indigenous pseudomonads, Pseudomonas putida DLL-E4, Pseudomonas reactans and Pseudomonas fluorescens, were isolated from chlorophenol-contaminated soil samples collected from a sawmill located in Durban (South Africa). The obtained isolates were tested for their ability to degrade chlorophenolic compounds: 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) in batch cultures. The isolates were found to effectively degrade up to 99.5, 98.4 and 94.0% with a degradation rate in the range of 0.67–0.99 (2,4-D), 0.57–0.93 (2,4-DCP) and 0.30–0.39 (2,4,6-TCP) mgL–1 day–1 for 2,4-D; 2,4-DCP and 2,4,6-TCP, respectively. The degradation kinetics model revealed that these organisms could tolerate up to 600 mg/L of 2,4-DCP. Catechol 2,3-dioxygenase activity detected in the crude cell lysates of P. putida DLL-E4 and P. reactans was 21.9- and 37.6-fold higher than catechol 1,2-dioxygenase activity assayed, suggesting a meta-pathway for chlorophenol degradation by these organisms. This is also supported by the generally high expression of C23O gene (involved in meta-pathway) relative to tfdC gene (involved in ortho-pathway) expression. Results of this study will be helpful in the exploitation of these organisms and/or their enzymes in bioremediation strategies for chlorophenol-polluted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olaniran, A.O. and Igbinosa, E.O., Chemosphere, 2011, vol. 83, no. 10, pp.1297–1306.

    Google Scholar 

  2. Michalowicz, J. and Duda, W., Pol. J. Environ. Stud., 2007, vol. 16, no. 3, pp. 347–362.

    CAS  Google Scholar 

  3. Igbinosa, E.O., Odjadjare, E.E., Chigor, V.N., Igbinosa, I.H., Emoghene, A.O., Ekhaise, et al., Sci. World J., 2013, vol. 2013, no. 1, pp. 1–11.

    Google Scholar 

  4. Potgieter, J.H., Bada, S.O., and Potgieter-Vermaak, S.S., Water S. A. (Online), 2009, vol. 35, no. 1, pp. 2–5.

  5. Gutierrez, M.E., Gonzalez, M.H., Martinez-Hernandez, S., Texier, A.C., Cuervo-Lopez, F.M., and Gomez, J., Environ. Technol., 2012, vol. 33, no. 12, pp. 1375–1382.

    Article  Google Scholar 

  6. Kumar, A., Trefault, N., and Olaniran, A.O., Crit. Rev. Microbiol., 2016, vol. 42, no. 2, pp. 194–208.

    CAS  PubMed  Google Scholar 

  7. Lillis, L., Clipson, N., and Doyle, E., FEMS Microbiol. Ecol., 2010, vol. 73, no. 2, pp. 363–369.

    CAS  PubMed  Google Scholar 

  8. Nicolaisen, M.H., Baelum, J., Jacobsen, C.S., and Sorensen, J., Environ. Microbiol., 2008, vol.10, no. 1, pp. 571–579.

    Article  CAS  PubMed  Google Scholar 

  9. Fukumori, F. and Hausinger, R.P., J. Biol. Chem., 1993, vol. 268, no. 1, pp. 24311–24317.

    CAS  PubMed  Google Scholar 

  10. Balajee, S. and Mahadevan, A., Xenobiotics, 1999, vol. 20, no. 6, pp. 607–617.

    Article  Google Scholar 

  11. Nakai, C., Horiike, K., Kuramitsu, S., Kagamiyama, H., and Nozaki, M., J. Biol. Chem., 1990, vol. 265, no. 2, pp. 660–665.

    CAS  PubMed  Google Scholar 

  12. Nakai, C., Nakazawa, T., and Nozaki, M., Arch. Biochem. Biophys., 1988, vol. 267, no. 2, pp. 701–713.

    Article  CAS  PubMed  Google Scholar 

  13. Kukor, J.J. and Olsen, R.H., J. Bacteriol., 1991, vol. 173, no. 15, pp. 4587–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaschabek, S.R., Kasberg, T., Muller, D., Mars, A.E., Janssen, D.B., and Reineke, W., J. Bacteriol., 1998, vol. 180, no. 2, pp. 296–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., and Janssen, D.B., J. Bacteriol., 1999, vol. 181, no. 4, pp.1309–1318.

    Google Scholar 

  16. Wieser, M., Eberspacher, J., Vogler, B., and Lingens, F., FEMS Microbiol. Lett., 1994, vol. 116, no. 1, pp. 73–78.

    Article  CAS  PubMed  Google Scholar 

  17. Shinji, T., Ryosuke, N., Ayumi, M., and Ken-ichi, Y., BioMed Central: The Open Access, 2013, vol. 13, no. 62, pp. 1–10.

    Google Scholar 

  18. Olaniran, A.O., Pillay, D., and Pillay, B., J. Environ. Sci., 2004, vol. 16, no. 6, pp. 968–972.

    CAS  Google Scholar 

  19. Olaniran, A.O., Naidoo, S., Masango, M.G., and Pillay, B., Biotechnol. Bioprocess. Eng., 2007, vol. 12, no. 3, pp. 276–281.

    Article  CAS  Google Scholar 

  20. Movahedyan, H., Khorsandi, H., Salehi, R., and Nikaeen, M., Iran J. Environ. Health Sci. Eng., 2009. vol. 6, no. 1, pp.115–120.

    Google Scholar 

  21. McFarland, J., J. Am.Med. Assoc., 1907, vol. XLIX, no. 14, pp. 1176.

    Article  Google Scholar 

  22. Al-Thani, R.F., Abd-El-Haleem, A.M., and Al-Shammri, M., African J. Biotechnol., 2007 vol. 6, no. 23, pp. 2675–2681.

    Article  CAS  Google Scholar 

  23. Wu, J. and Nofziger, D.L., J. Environ. Quality, 1999, vol. 28, no. 1, pp. 92–100.

    Article  CAS  Google Scholar 

  24. Kargi, F. and Eker, S., Inter. Biodeter. Biodegrad., 2005, vol. 55, no. 1, pp. 25–28.

    Article  CAS  Google Scholar 

  25. Mahiudddin, M.D., Fakhruddin, A.N.M., and Abdullah-Al-Mahin, A., Int. School. Res. Net. Microbiol., 2011, vol. 201, no. 1, pp. 1–6.

    Google Scholar 

  26. Sei, K., Asano, K.I., Tateishi, N., Mori, K., Ike, M., and Fujita, M., J. Biosci. Bioeng., 1999, vol. 88, no. 5, pp. 542–550.

    Article  CAS  PubMed  Google Scholar 

  27. El-Fantroussi, S. and Agathos, S.N., Curr. Opin. Microbiol., 2005, vol. 8, no. 3, pp.1–8.

    Article  Google Scholar 

  28. Xing-ping, Liu, Water Sci. Eng., 2009, vol. 2, no. 3, pp. 110–120.

    Google Scholar 

  29. Fakhruddin, A.N.M. and Quilty, B., World J. Microbiol. Biotechnol., 2005, vol. 21, no. 8, pp. 1541–1548.

    Article  CAS  Google Scholar 

  30. Zouari, H., Moukha, S., Labat, M., and Sayadi, S., Appl. Biochem. Biotechnol., 2002, vol. 103, no. 6, pp. 261–276.

    Article  Google Scholar 

  31. Gaofeng, W., Hong, X., and Mei, J., Chem. J. Inter., 2004, vol. 10, no. 6, pp. 67.

    Google Scholar 

  32. Annachhatre, A.P. and Gheewala, S.H., Biotechnol. Adv., 1996, vol. 14, no. 1, pp. 35–56.

    Article  CAS  PubMed  Google Scholar 

  33. Tay, J.H., He, Y.X., and Yan, Y.G., J. Environ. Eng., 2001, vol. 127, no. 1, pp. 38–45.

    Article  CAS  Google Scholar 

  34. Leander, M., Vallaeys, T., and Fulthorpe, R., Can. J. Microbiol., 1998, vol. 44, no. 5, pp. 482–486.

    CAS  PubMed  Google Scholar 

  35. Merimaa, M., Heinaru, E., and Liivak, M., Arch. Microbiol., 2006, vol. 186, no. 4, pp. 287–296.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Olaniran.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaniran, A.O., Singh, L., Kumar, A. et al. Aerobic degradation of 2,4-dichlorophenoxyacetic acid and other chlorophenols by Pseudomonas strains indigenous to contaminated soil in South Africa: Growth kinetics and degradation pathway. Appl Biochem Microbiol 53, 209–216 (2017). https://doi.org/10.1134/S0003683817020120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817020120

Keywords

Navigation