Skip to main content
Log in

Sparse Adaptive Parameterization of Variability in Image Ensembles

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper introduces a new parameterization of diffeomorphic deformations for the characterization of the variability in image ensembles. Dense diffeomorphic deformations are built by interpolating the motion of a finite set of control points that forms a Hamiltonian flow of self-interacting particles. The proposed approach estimates a template image representative of a given image set, an optimal set of control points that focuses on the most variable parts of the image, and template-to-image registrations that quantify the variability within the image set. The method automatically selects the most relevant control points for the characterization of the image variability and estimates their optimal positions in the template domain. The optimization in position is done during the estimation of the deformations without adding any computational cost at each step of the gradient descent. The selection of the control points is done by adding a L 1 prior to the objective function, which is optimized using the FISTA algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. If the image domain Ω is discretized into a regular lattice of N im voxels, then Y(t) could be seen as a dN im-dimensional vectors of the voxels positions that are mapped back via the inverse deformation.

  2. Note that this is not exactly the elastic net paradigm, since we do not use the usual Euclidean norm on the momentum vectors for the L 2 penalty (α 0,i t α 0,i ) but the L 2 metric induced by the metric K g instead (α 0,i t K g α 0,i ).

References

  • Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In Proc. of EMMCVPR (pp. 365–381).

    Google Scholar 

  • Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 69(1), 3–29.

    MathSciNet  Google Scholar 

  • Allassonnière, S., Kuhn, E., & Trouvé, A. (2010). Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli, 16(3), 641–678.

    Article  MathSciNet  MATH  Google Scholar 

  • Arsigny, V., Commowick, O., Pennec, X., & Ayache, N. (2006). A log-euclidean framework for statistics on diffeomorphisms. In LNCS: Vol. 4190. Proc. MICCAI (pp. 924–931). Berlin: Springer.

    Google Scholar 

  • Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61, 139–157.

    Article  Google Scholar 

  • Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685.

    Article  Google Scholar 

  • Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 56(3), 587–600.

    MathSciNet  MATH  Google Scholar 

  • Durrleman, S. (2010). Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Thèse de sciences (phd thesis), Université de Nice-Sophia Antipolis.

  • Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis, 13(5), 793–808.

    Article  Google Scholar 

  • Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., & Ayache, N. (2011a). Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage, 55(3), 1073–1090.

    Article  Google Scholar 

  • Durrleman, S., Prastawa, M., Gerig, G., & Joshi, S. (2011b). Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In G. Székely & H. Hahn (Eds.), LNCS: Vol. 6801. Information processing in medical imaging (IPMI) (pp. 123–134).

    Chapter  Google Scholar 

  • Glasbey, C. A., & Mardia, K. V. (2001). A penalised likelihood approach to image warping. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 63, 465–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Glaunès, J., Qiu, A., Miller, M., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317–336. doi:10.1007/s11263-008-0141-9.

    Article  Google Scholar 

  • Grenander, U. (1994). General pattern theory: a mathematical theory of regular structures. London: Oxford University Press.

    MATH  Google Scholar 

  • Grenander, U., & Miller, M. I. (1998). Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694.

    MathSciNet  Google Scholar 

  • Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic characterization of biological growth. IEEE Transactions on Medical Imaging, 26(5), 648–659.

    Article  Google Scholar 

  • Hansen, M. S., Larsen, R., Glocker, B., & Navab, N. (2008). Adaptive parametrization of multivariate b-splines for image registration. In Computer vision and pattern recognition (pp. 1–8). New York: IEEE Press.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, W., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., & Miller, M. (2007). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging, 26, 462–470.

    Article  Google Scholar 

  • Lorenzen, P., Davis, B., & Joshi, S. C. (2005). Unbiased atlas formation via large deformations metric mapping. In Lecture notes in computer science: Vol. 3750. Medical image computing and computer-assisted intervention—MICCAI (pp. 411–418). Berlin: Springer.

    Google Scholar 

  • Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle method for diffeomorphic image registration. In LNCS: Vol. 4548. Proceedings of information processing in medical imaging (IPMI) (pp. 396–407). Berlin: Springer.

    Chapter  Google Scholar 

  • Meyer, Y. (2001). University lecture series: Vol. 22. Oscillating patterns in image processing and nonlinear evolution equations. Providence: Am. Math. Soc. The fifteenth Dean Jacqueline B. Lewis memorial lectures.

    MATH  Google Scholar 

  • Miller, I. M., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.

    Article  Google Scholar 

  • Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41, 61–84.

    Article  MATH  Google Scholar 

  • Miller, M., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.

    Article  MathSciNet  Google Scholar 

  • Nesterov, Y. E. (1983). A method of solving a convex programming problem with convergence rate o(1/k 2). Soviet Mathematics. Doklady. 27(2). Translation by A. Rosa.

  • Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66.

    Article  MathSciNet  Google Scholar 

  • Risser, L., Vialard, F. X., Wolz, R., Murgasova, M., Holm, D. D., & Rueckert, D. (2011). Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Transactions on Medical Imaging, 30, 1746–1759.

    Article  Google Scholar 

  • Rueckert, D., Aljabar, P., Heckemann, R. A., Hajnal, J., & Hammers, A. (2006). Diffeomorphic registration using B-splines. In Proc. MICCAI (pp. 702–709).

    Google Scholar 

  • Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener, M., & Joshi, S. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In T. Jiang, N. Navab, J. Pluim, & M. Viergever (Eds.), Lecture notes in computer science: Vol. 6363. Proc. MICCAI’10 (pp. 529–537). Berlin: Springer.

    Google Scholar 

  • Sommer, S., Nielsen, M., Darkner, S., & Pennec, X. (2012a). Higher order kernels and locally affine lddmm registration. arXiv:1112.3166v1.

  • Sommer, S., Nielsen, M., & Pennec, X. (2012b). Sparsity and scale: compact representations of deformation for diffeomorphic registration. In IEEE workshop on mathematical methods in biomedical image analysis (MMBIA 2012), Breckenridge, Colorado, USA. http://hal.inria.fr/hal-00641357/en/.

    Google Scholar 

  • Trouvé, A. (1998). Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213–221.

    Article  Google Scholar 

  • Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group action. Foundations of Computational Mathematics, 5(2), 173–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Lecture notes in computer science: Vol. 3565. Proceedings of information processing in medical imaging (pp. 381–392). Berlin: Springer.

    Chapter  Google Scholar 

  • Vaillant, M., Miller, M., Younes, L., & Trouvé, A. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23, 161–169.

    Article  Google Scholar 

  • Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1, Supp. 1), S61–S72. doi:10.1016/j.neuroimage.2008.10.040.

    Article  Google Scholar 

  • Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse model selection. In Proceedings of the international conference on image processing (ICIP) (pp. 1641–1644). New York: IEEE Press.

    Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 67(2), 301–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Timothy O’Keefe and Paul Sanders for their kind proofreading of the manuscript. This work has been supported by ANR grant IRMGroup and NIH grants NIBIB (5R01EB007688) and NCRR (2P41 RR0112553-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Durrleman.

Appendices

Appendix A: Proof of Proposition 1

Let δ S 0 be a small perturbation of the deformation parameters. This perturbation induces a perturbation of the system of particles δ S(t), which induces a perturbation of the position of the pixels mapped back by the inverse deformation δ y(0), which in turn induces a perturbation of the criterion δE:

$$ \delta E = (\nabla_{\mathbf{y}(0)}A )^t\delta\mathbf {y}(0) + (\nabla_{\mathbf{S}_0}L )^t \delta\mathbf{S}_0. $$
(40)

According to (21), the perturbations of the state of the system of particles δ S(t) and the pixel positions δ y(t) satisfy the linearized ODEs:

The first ODE is linear. Its solution is given by:

$$ \delta\mathbf{S}(t) = \exp \biggl(\int _0^t d_{\mathbf{S}(u)}F du \biggr)\delta \mathbf{S}_0. $$
(41)

The second ODE is linear with source term. Its solution is given by:

$$ \delta\mathbf{y}(0) = -\int _0^1 \exp \biggl(-\int_0^s \partial_1 G(u)du \biggr)\partial_2 G(s)\delta \mathbf{S}(s)ds. $$
(42)

Plugging (41) into (42) and then into (40) leads to:

$$ \nabla_{\mathbf{S}_0} E = -\int _0^1 {R_{0s}}^t \partial_2G(s)^t{V_{s0}}^t \nabla_{\mathbf{y}(0)}A ds + \nabla_{\mathbf{S}_0}L, $$
(43)

where

$$R_{st} = \exp \biggl(\int_s^t d_{\mathbf{S}(u)}F du \biggr) $$

and

$$V_{st} =\exp \biggl(-\int_s^t \partial_1 G(u) du \biggr). $$

Let us denote η(s)=−V s0 t y(0) A, g(s)= 2 G(s)t η(s) and \(\xi(t) = \int_{t}^{1} {R_{0s}}^{t} g(s)ds\), so that the gradient (43) can be re-written as:

$$ \nabla_{\mathbf{S}_0} E = \int_0^1 {R_{0s}}^tg(s)ds + \nabla_{\mathbf{S}_0}L = \xi (0) + \nabla_{\mathbf{S}_0}L. $$

Now, we need to make explicit the computation of the auxiliary variables η(t) and ξ(t). By definition of V s0, we have V 00=Id and dV s0/ds=V s0 1 G(s), which implies that η(0)=−∇ y(0) A and \(\dot{\eta}(t) = -{\partial_{1} G(t)}^{t}\eta(t)\).

For ξ(t), we notice that \(R_{ts} = \text{Id} - \int_{t}^{s} \frac {dR_{us}}{du} du \) \(= \text{Id} + \int_{t}^{s} R_{us}d_{\mathbf {S}(u)}F(u) du\). Therefore, using Fubini’s theorem, we get:

This last equation is nothing but the integral form of the ODE given in (24).

Appendix B: Lemma: Soft Thresholding in ℝN

Lemma 1

Soft-thresholding in ℝN

Let X and X 0≠0 two vectors inN and F the criterion:

$$ F(X) = \Vert X\Vert + \frac{1}{2\beta} \Vert X - X_0 \Vert ^2. $$

Then F achieves its minimum for

$$ X = S_{\beta} \bigl(\Vert X_0\Vert \bigr) \frac {X_0}{\Vert X_0\Vert }, $$

where S β (x)=max(xβ,0)−min(x+β,0).

Proof

If X≠0, F is differentiable and \(\nabla_{X} F = \frac{X}{\Vert X\Vert }+(X - X_{0})/\beta\). This shows that if the minimum of F is reached for X≠0 then X is parallel to X 0 and we can write X=λX 0/∥X 0∥ where λ satisfies:

$$ \lambda/\vert \lambda \vert + \bigl(\lambda- \Vert X_0\Vert \bigr)/\beta= 0. $$

If λ>0, then the minimum is reached for λ +=∥X 0∥−β, which occurs only if ∥X 0∥>β. If λ<0, then the minimum is reached for λ =∥X 0∥+β, which occurs only if ∥X 0∥<−β. In the other cases, namely ∥X 0∥∈[−β,β], X=0.

Since F(λ + X 0/∥X 0∥)−F(0)<0, then the minimum of F is reached for X=(∥X 0∥−β)X 0/∥X 0∥ if ∥X 0∥>β. Since F(λ X 0/∥X 0∥)−F(0)>0, then the minimum of F is reached for X=(∥X 0∥+β)X 0/∥X 0∥ if ∥X 0∥<−β. If ∥X 0∥∈[−β,β], the minimum of F is reached for X=0. These three cases are combined in a single expression using the soft-thresholding function S β . □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrleman, S., Allassonnière, S. & Joshi, S. Sparse Adaptive Parameterization of Variability in Image Ensembles. Int J Comput Vis 101, 161–183 (2013). https://doi.org/10.1007/s11263-012-0556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0556-1

Keywords

Navigation