Skip to main content

Surface Matching via Currents

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

We present a new method for computing an optimal deformation between two arbitrary surfaces embedded in Euclidean 3-dimensional space. Our main contribution is in building a norm on the space of surfaces via representation by currents of geometric measure theory. Currents are an appropriate choice for representations because they inherit natural transformation properties from differential forms. We impose a Hilbert space structure on currents, whose norm gives a convenient and practical way to define a matching functional. Using this Hilbert space norm, we also derive and implement a surface matching algorithm under the large deformation framework, guaranteeing that the optimal solution is a one-to-one regular map of the entire ambient space. We detail an implementation of this algorithm for triangular meshes and present results on 3D face and medical image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, D.W.: On Growth and Forms. Cambridge University Press, Cambridge (1917)

    Google Scholar 

  2. Bookstein, F.L.: Morphometric tools for landmark data; geometry and biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  3. Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Comp. Vision and Image Understanding 66(2), 207–222 (1997)

    Article  Google Scholar 

  4. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Processing 9(8), 1357–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Camion, V., Younes, L.: Geodesic interpolating splines. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 513–527. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Glaunès, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. Journal of Mathematical Imaging and Vision, MIA 2002 special (20) (2004)

    Google Scholar 

  7. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 114–141 (2003)

    Article  MATH  Google Scholar 

  8. Wang, Y., Peterson, B.S., Staib, L.H.: 3d brain surface matching based on geodesics and local geometry. Computer Vision and Image Understanding 89, 252–271 (2003)

    Article  Google Scholar 

  9. Davies, R.H., Cootes, T.F., Taylor, C.J.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Glaunès, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. In: CVPR, pp. 712–718. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. deRham, G.: Variétés différentiables, formes, courants, formes harmoniques. Act. Sci. Indust. 1222 (1955)

    Google Scholar 

  12. Morgan, F.: Geometric measure theory, 2nd edn. Acad. Press, INC., New York (1995)

    MATH  Google Scholar 

  13. do Carmo, M.P.: Differential Forms and Applications. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  14. Wahba, G.: Spline Models for Observational Data. In: CBMS-NSF Regional conference series. SIAM, Philadelphia (1990)

    Google Scholar 

  15. Trouvé, A.: An infinite dimensional group approach for physics based models. Technical report, electronically (1995), available at http://www.cis.jhu.edu

  16. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quaterly of Applied Math. 56, 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting in computational anatomy. Technical report, Center for Imaging Science, Johns Hopkins University (2003)

    Google Scholar 

  18. Vaillant, M., Miller, M.I., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, 161–169 (2004)

    Article  Google Scholar 

  19. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering 4, 375–405 (2002)

    Article  Google Scholar 

  20. USF HumanID 3D faces database, courtesy of Professor Sudeep Sarkar, University of South Florida, Tampa FL. http://marthon.csee.usf.edu/HumanID/

  21. Chupin, M., Hasboun, D., Baillet, S., Kinkingnéhun, S., Dubois, B., Garnero, L.: Competitive segmentation of the hippocampus and the volumetry in alzheimer’s disease. In: 10th Annual Meeting of the Organization for Human Brain Mapping, June 13-17 (2004)

    Google Scholar 

  22. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)

    Google Scholar 

  23. Cohen-Steiner, D., Morvan, J.-M.: Restricted delaunay triangulations and normal cycle. In: SCG 2003: Proceedings of the nineteenth annual symposium on Computational geometry, San Diego, California, USA, pp. 312–321. ACM Press, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vaillant, M., Glaunès, J. (2005). Surface Matching via Currents. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_32

Download citation

  • DOI: https://doi.org/10.1007/11505730_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics