Skip to main content
Log in

Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts

  • ORIGINAL PAPER
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Designing novel cathode materials for a proton exchange membrane fuel cell with high activity for the oxygen reduction reaction, low Pt loading, and enhanced long-term stability is imperative for its sustainability. To date, Pt monolayer based electrocatalysts deposited on a metallic core substrate have shown promising possibilities. In this study, we synthesized bimetallic IrCu nanoparticles and used them as a core for Pt monolayer electrocatalysts. It was found that the de-alloyed IrCu nanoparticle surfaces increased both the mass and specific activities of the resulting Pt monolayer catalyst. In addition, we demonstrated that Pt monolayer electrocatalysts with a de-alloyed IrCu core have a better stability than those using a non-dealloyed core based on a 5,000 potential cycling test. These data describe a new simple synthesis of a high-performance catalyst suitable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  2. Adzic RR (1998) In: Lipkowski J, Ross P (eds) Electrocatalysis. Wiley, New York, p 197

    Google Scholar 

  3. Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Energy Environ Sci 5:5297

    Article  CAS  Google Scholar 

  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B Environ 56:9

    Article  CAS  Google Scholar 

  5. Vukmirovic MB, Bliznakov ST, Sasaki K, Wang JX, Adzic RR (2011) Electrochem Soc Interface 20:33

    Google Scholar 

  6. Kohn W, Sham LJ (1965) Phys Rev B 140:A1133

    Article  Google Scholar 

  7. Kresse G, Hafner J (1993) Phys Rev. B 47:558

    Article  CAS  Google Scholar 

  8. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  Google Scholar 

  9. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  10. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Nat Chem 2:454

    Article  CAS  Google Scholar 

  11. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) J Am Chem Soc 131:17298

    Article  CAS  Google Scholar 

  12. Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) J Am Chem Soc 133:13551

    Article  CAS  Google Scholar 

  13. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132

    Article  CAS  Google Scholar 

  14. Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Nano Lett 12:6266

    Article  CAS  Google Scholar 

  15. Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valerio J, Uribe F (2007) Top Catal 46:249

    Article  CAS  Google Scholar 

  16. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Angew Chem. Int. Ed. 49:8602

    Article  CAS  Google Scholar 

  17. Gong K, Choi Y, Vukmirovic MB, Liu P, Ma C, Su D, Adzic RR (2012) Z Phys Chem 226:1025

    Article  CAS  Google Scholar 

  18. Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Nat Commun 3:1115

    Article  Google Scholar 

  19. Sasaki K, Kuttiyiel K, Su D, Adzic R (2011) Electrocatalysis 2:134

    Article  CAS  Google Scholar 

  20. Sasaki K, Kuttiyiel KA, Barrio L, Su D, Frenkel AI, Marinkovic N, Mahajan D, Adzic RR (2011) J Phys Chem C 115:9894

    Article  CAS  Google Scholar 

  21. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 114–115

  22. Scientific Group Thermodata Europe (SGTE), Franke P, Neuschütz D, Cu–Ir (Copper–Iridium). Franke P, Neuschütz D (eds). Springer Materials: the Landolt-Börnstein Database. doi:10.1007/978-3-540-45280-5_55, http://www.springermaterials.com. Accessed 2 Jan 2012

  23. Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction Prentice-Hall Inc., New York

  24. Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) J Am Chem Soc 132:9253

    Article  CAS  Google Scholar 

  25. Miki A, Ye S, Osawa M (2002) Chem Commun 1500

Download references

Acknowledgments

This research was performed at Brookhaven National laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division. This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B3-2415). Y.C. truly acknowledges the kind support by Drs. Hicham Idriss and Essam H. Jamea to carry out this project in Brookhaven National Laboratory. Also, Y.C. thanks Dr. Toseef N. Ahmed and Hugh Issacs and Wei-Fu Chen for SEM/EDX measurements and fruitful discussion on electrochemistry, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongMan Choi or Radoslav R. Adzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Kuttiyiel, K.A., Labis, J.P. et al. Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts. Top Catal 56, 1059–1064 (2013). https://doi.org/10.1007/s11244-013-0070-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0070-x

Keywords

Navigation