Skip to main content
Log in

Reforming of C6 Hydrocarbons Over Model Pt Nanoparticle Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Size-controlled model Pt nanoparticle catalysts, synthesized by colloidal chemistry, were used to study the hydrogenative reforming of three C6 hydrocarbons in mixtures with 5:1 excess of H2: methylcyclopentane, n-hexane and 2-methylpentane. We found a strong particle size dependence on the distribution of different reaction products for the hydrogenolysis of methylcyclopentane. The reactions of 50 Torr methylcyclopentane in 250 Torr H2 at 320 °C, using 1.5 and 3.0 nm Pt nanoparticles produced predominantly C6 isomers, especially 2-methylpentane, whereas 5.2 and 11.3 nm Pt nanoparticles were more selective for the formation of benzene. For the hydrogenolysis of n-hexane and 2-methylpentane, strong particle size effects on the turnover rates were observed. Hexane and 2-methylpentane reacted up to an order of magnitude slower over 3.0 nm Pt than over the other particle sizes. At 360 °C the isomerization reactions were more selective than the other reaction pathways over 3.0 nm Pt, which also yielded relatively less benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuhn JN, Tsung CK, Huang W, Somorjai GA (2009) J Catal 265:209–215

    Article  CAS  Google Scholar 

  2. Tsung CK, Kuhn JN, Huang WY, Aliaga C, Hung LI, Somorjai GA, Yang PD (2009) J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  3. Kuhn JN, Huang WY, Tsung CK, Zhang YW, Somorjai GA (2008) J Am Chem Soc 130:14026

    Article  CAS  Google Scholar 

  4. Kliewer CJ, Aliaga C, Bieri M, Huang WY, Tsung CK, Wood JB, Komvopoulos K, Somorjai GA (2010) J Am Chem Soc 132:13088–13095

    Article  CAS  Google Scholar 

  5. Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343–1348

    Article  CAS  Google Scholar 

  6. Zaera F, Godbey D, Somorjai GA (1986) J Catal 101:73–80

    Article  CAS  Google Scholar 

  7. Garin F, Aeiyach S, Legare P, Maire G (1982) J Catal 77:323–337

    Article  CAS  Google Scholar 

  8. Brandenberger SG, Callender WL, Meerbott WK (1976) J Catal 42:282–287

    Article  CAS  Google Scholar 

  9. Zhuang YP, Frennet A (1999) Appl Catal A Gen 177:205–217

    Article  CAS  Google Scholar 

  10. Galperin LB, Bricker JC, Holmgren JR (2003) Appl Catal A Gen 239:297–304

    Article  CAS  Google Scholar 

  11. Barron Y, Maire G, Muller JM, Gault FG (1966) J Catal 5:428–446

    Article  CAS  Google Scholar 

  12. Dautzenberg FM, Platteeuw JC (1970) J Catal 19:41–48

    Article  CAS  Google Scholar 

  13. Bai XL, Sachtler WMH (1991) J Catal 129:121–129

    Article  CAS  Google Scholar 

  14. Davis BH (1999) Catal Today 53:443–516

    Article  CAS  Google Scholar 

  15. Teschner D, Paal Z, Duprez D (2001) Catal Today 65:185–190

    Article  CAS  Google Scholar 

  16. Samoila P, Boutzeloit M, Especel C, Epron F, Marecot P (2009) Appl Catal A Gen 369:104–112

    Article  CAS  Google Scholar 

  17. Poupin C, Pirault-Roy L, La Fontaine C, Toth L, Chamam M, Wootsch A, Paal Z (2010) J Catal 272:315–319

    Article  CAS  Google Scholar 

  18. Vaarkamp M, Dijkstra P, Vangrondelle J, Miller JT, Modica FS, Koningsberger DC, Vansanten RA (1995) J Catal 151:330–337

    Article  CAS  Google Scholar 

  19. Kramer R, Fischbacher M (1989) J Mol Catal 51:247–259

    Article  CAS  Google Scholar 

  20. Anderson JBF, Burch R, Cairns JA (1987) J Catal 107:351–363

    Article  CAS  Google Scholar 

  21. Alayoglu S, Aliaga C, Sprung C, Somorjai GA (2011) Catal Lett 141:914–924

    Article  CAS  Google Scholar 

  22. Bond GC, Paál Z (1992) Appl Catal A Gen 86:1–35

    Article  CAS  Google Scholar 

  23. Chandler BD, Rubinstein LI, Pignolet LH (1998) J Mol Catal A Chem 163:43–53

    Google Scholar 

  24. Garin F, Girard P, Maire G, Lu G, Guczi L (1997) Appl Catal A Gen 152:237–247

    Article  CAS  Google Scholar 

  25. Hardeveld RV, Hartog F (1969) Surf Sci 15:189–230

    Article  Google Scholar 

  26. Paál Z (1992) Catal Today 12:297

    Article  Google Scholar 

  27. Gnutzman V, Vogel W (1990) J Phys Chem 94:4991

    Article  Google Scholar 

  28. Balandin AA (1969) Adv Catal 19:1

    Article  CAS  Google Scholar 

  29. Bond GC, Lin X (1997) J Catal 168:207–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by Office of Science, Department of Energy (DOE-BES) and Chevron Corporation. Nanoparticle imaging was performed at the Molecular Foundry and the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the US Department of Energy under Contract # DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor A. Somorjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alayoglu, S., Pushkarev, V.V., Musselwhite, N. et al. Reforming of C6 Hydrocarbons Over Model Pt Nanoparticle Catalysts. Top Catal 55, 723–730 (2012). https://doi.org/10.1007/s11244-012-9873-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9873-4

Keywords

Navigation