Skip to main content
Log in

Size and Shape Dependence on Pt Nanoparticles for the Methylcyclopentane/Hydrogen Ring Opening/Ring Enlargement Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Monodisperse Pt nanoparticles (NPs) with well-controlled sizes in the range between 1.5 and 10.8 nm, and shapes of octahedron, cube, truncated octahedron and spheres (~6 nm) were synthesized employing the polyol reduction strategy with polyvinylpyrrolidone (PVP) as the capping agent. We characterized the as-synthesized Pt nanoparticles using transmission electron microscopy (TEM), high resolution TEM, sum frequency generation vibrational spectroscopy (SFGVS) using ethylene/H2 reaction as the surface probe, and the catalytic ethylene/H2 reaction by means of measuring surface concentration of Pt. The nanoparticles were supported in mesoporous silica (SBA-15 or MCF-17), and their catalytic reactivity was evaluated for the methylcyclopentane (MCP)/H2 ring opening/ring enlargement reaction using 10 torr MCP and 50 torr H2 at temperatures between 160 and 300 °C. We found a strong correlation between the particle shape and the catalytic activity and product distribution for the MCP/H2 reaction on Pt. At temperatures below 240 °C, 6.3 nm Pt octahedra yielded hexane, 6.2 nm Pt truncated octahedra and 5.2 nm Pt spheres produced 2-methylpentane. In contrast, 6.8 nm Pt cubes led to the formation of cracking products (i.e. C1–C5) under similar conditions. We also detected a weak size dependence of the catalytic activity and selectivity for the MCP/H2 reaction on Pt. 1.5 nm Pt particles produced 2-methylpentane for the whole temperature range studied and the larger Pt NPs produced mainly benzene at temperatures above 240 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Zaera F, Godbey D, Somorjai GA (1986) J Catal 101:73–80

    Article  CAS  Google Scholar 

  2. Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343–1348

    Article  CAS  Google Scholar 

  3. Kuhn JN, Tsung CK, Huang W, Somorjai GA (2009) J Catal 265:209–215

    Article  CAS  Google Scholar 

  4. Tsung CK, Kuhn JN, Huang WY, Aliaga C, Hung LI, Somorjai GA, Yang PD (2009) J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  5. Kuhn JN, Huang WY, Tsung CK, Zhang YW, Somorjai GA (2008) J Am Chem Soc 130:14026

    Google Scholar 

  6. Kliewer CJ, Aliaga C, Bieri M, Huang WY, Tsung CK, Wood JB, Komvopoulos K, Somorjai GA (2010) J Am Chem Soc 132:13088–13095

    Article  CAS  Google Scholar 

  7. Brandenberger SG, Callender WL, Meerbott WK (1976) J Catal 42:282–287

    Article  CAS  Google Scholar 

  8. Zhuang YP, Frennet A (1999) Appl Catal A Gen 177:205–217

    Article  CAS  Google Scholar 

  9. Galperin LB, Bricker JC, Holmgren JR (2003) Appl Catal A Gen 239:297–304

    Article  CAS  Google Scholar 

  10. Bai XL, Sachtler WMH (1991) J Catal 129:121–129

    Article  CAS  Google Scholar 

  11. Teschner D, Paal Z, Duprez D (2001) Catal Today 65:185–190

    Article  CAS  Google Scholar 

  12. Samoila P, Boutzeloit M, Especel C, Epron F, Marecot P (2009) Appl Catal A Gen 369:104–112

    Article  CAS  Google Scholar 

  13. Poupin C, Pirault-Roy L, La Fontaine C, Toth L, Chamam M, Wootsch A, Paal Z (2010) J Catal 272:315–319

    Article  CAS  Google Scholar 

  14. Vaarkamp M, Dijkstra P, Vangrondelle J, Miller JT, Modica FS, Koningsberger DC, Vansanten RA (1995) J Catal 151:330–337

    Article  CAS  Google Scholar 

  15. Kramer R, Fischbacher M (1989) J Mol Catal 51:247–259

    Article  CAS  Google Scholar 

  16. Anderson JBF, Burch R, Cairns JA (1987) J Catal 107:351–363

    Article  CAS  Google Scholar 

  17. Glassl H, Hayek K, Kramer R (1981) J Catal 68:397–405

    Article  CAS  Google Scholar 

  18. Rioux RM, Song HJ, Yang PD, Somorjai GA (2005) Abstr Pap Am Chem S 229:U723–U723

  19. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Solid State Ionics 32–3:198–205

    Article  Google Scholar 

  20. Alayoglu S, Eichhorn B (2008) J Am Chem Soc 130:17479–17486

    Article  CAS  Google Scholar 

  21. Horiuti I, Polanyi M (1934) T Faraday Soc 30:1164–1172

    Article  Google Scholar 

  22. Cremer PS, Su XC, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949

    Article  CAS  Google Scholar 

  23. McCrea KR, Somorjai GA (2000) J Mol Catal A Chem 163:43–53

    Article  CAS  Google Scholar 

  24. Watwe RM, Cortright RD, Norskov JK, Dumesic JA (2000) J Phys Chem B 104:2299–2310

    Article  CAS  Google Scholar 

  25. Anghel AT, Jenkins SJ, Wales DJ, King DA (2006) J Phys Chem B 110:4147–4156

    Article  CAS  Google Scholar 

  26. Sun YG, Xia YN (2002) Science 298:2176–2179

    Article  CAS  Google Scholar 

  27. Hayek K, Kramer R, Paal Z (1997) Appl Catal A Gen 162:1–15

    Article  CAS  Google Scholar 

  28. Hayek K, Fuchs M, Klotzer B, Reichl W, Rupprechter G (2000) Top Catal 13:55–66

    Article  CAS  Google Scholar 

  29. Corolleu C, Juttard D, Muller JM, Gault FG, Maire G (1972) J Catal 27:466

  30. Alvarez WE, Resasco DE (1996) J Catal 164:467–476

    Article  CAS  Google Scholar 

  31. Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10–19

    Article  CAS  Google Scholar 

  32. Rupprechter G, Freund HJ (2001) Top Catal 14:3–14

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by Office of Science, Department of Energy. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy under Contract # DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Somorjai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alayoglu, S., Aliaga, C., Sprung, C. et al. Size and Shape Dependence on Pt Nanoparticles for the Methylcyclopentane/Hydrogen Ring Opening/Ring Enlargement Reaction. Catal Lett 141, 914–924 (2011). https://doi.org/10.1007/s10562-011-0647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0647-6

Keywords

Navigation