Skip to main content
Log in

Effects of the Dietary Addition of Amaranth (Amaranthus mantegazzianus) Protein Isolate on Antioxidant Status, Lipid Profiles and Blood Pressure of Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The effects of the dietary addition of 2.5 % (w/w) Amaranthus mantegazzianus protein isolate (AI) on blood pressure, lipid profiles and antioxidative status of Wistar rats were evaluated. Six diets were used to feed animals during 28 days: (base (AIN93G), Chol (cholesterol 1 %, w/w), CE (α-tocopherol 0.005 %, w/w), CholE (cholesterol 1 % (w/w) + α-tocopherol 0.005 %, w/w), CAI (AI 2.5 % w/w), CholAI (cholesterol 1 % (w/w) + AI 2.5 %, w/w). Lipid profiles of plasma and liver and faecal cholesterol content were analyzed. Antioxidant status was evaluated by the ferric reducing activity of plasma (FRAP), the 2-thiobarbituric acid (TBA) assay and superoxide dismutase (SOD) activity in plasma and liver. Blood pressure was measured in the tail artery of rats. CholA group presented a significant (α < 0.05) reduction (16 %) in the plasma total cholesterol. In liver, the intake of cholesterol (Chol group) induced a significant increment in cholesterol and triglycerides (2.5 and 2.3 times, respectively), which could be decreased (18 % and 47 %, respectively) by the addition of AI (CholA group). This last group also showed an increased faecal cholesterol excretion (20 %). Increment (50 %) in FRAP values, diminution of TBA value in plasma and liver (70 % and 38 %, respectively) and diminution of SOD activity (20 %) in plasma of CholA group suggest an antioxidant effect because of the intake of AI. In addition, CA and CholA groups presented a diminution (18 %) of blood pressure after 28 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vecchi B, Añón M (2009) ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochem. 70(7):864–870

    Article  CAS  Google Scholar 

  2. Fritz M, Vecchi B, Rinaldi G, Añón M (2011) Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem 126:878–884

    Article  CAS  Google Scholar 

  3. Escudero N, Zirulnik F, Gomez N, Mucciarelli S, Giménez M (2006) Influence of a protein concentrate from Amaranthus cruentus seeds on lipid metabolism. Exp Biol Med 231:50–59

    CAS  Google Scholar 

  4. Mendonça S, Saldiva P, Cruz R, Arêas A (2009) Amaranth protein presents cholesterol-lowering effect. Food Chem 116:738–742

    Article  Google Scholar 

  5. Nsimba R, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106:760–766

    Article  Google Scholar 

  6. López V, Razzeto G, Giménez M, Escudero N (2011) Antioxidant properties of A. hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant Foods Hum Nutr 66:157–162

    Article  Google Scholar 

  7. Orsini Delgado M, Tironi V, Añón M (2011) Antioxidant activity of amaranth protein or their hydrolysates under simulated gastrointestinal digestion. LWT-Food Sci Technol 44:1752–1760

    Article  CAS  Google Scholar 

  8. Orsini Delgado M, Galleano M, Añón M, Tironi V (2015) Amaranth peptides from gastrointestinal digestion: antioxidant activity against physiological reactive species. Plant Foods Human Nutr 70:27–34

    Article  Google Scholar 

  9. Martinez N, Añón MC (1996) Composition and structural characterization of amaranth protein isolates. An electrophoretic and calorimetric study. J Agric Food Chem 44:2523–2530

    Article  CAS  Google Scholar 

  10. Reeves P, Nielsen F, Fahey Jr G (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Diet J Nutr 123:1939–1951

  11. Friedewald W, Levy R, Fredrickson D (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  Google Scholar 

  12. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  13. Chen G, Luo Y, Ji B, Li B, Su W, Xiao Z, Zhang G (2011) Hypocolesterolemic effects of Auricularia auricula ethanol extract in ICR mice fed a cholesterol-enriched diet. J Food Sci Technol 48(6):692–698

    Article  CAS  Google Scholar 

  14. Bragagnolo N, Rodríguez-Amaya D (2003) Comparison of the cholesterol content of Brazilian chicken and quail eggs. J Food Composition Anal 16:147–153

    Article  CAS  Google Scholar 

  15. Benzie I, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  16. Yagi K (1976) A simple fluorometric assay for lipoperoxides in blood plasma. Biochem Med 15:121–216

    Article  Google Scholar 

  17. Friesen J, Rodwell, V. (2004). The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biology, 5, 11, Article 248.

  18. Fritz M, Rinaldi G (2007) Influence of nitric oxide-mediated vasodilation on the blood pressure measured with the tail-cuff method in the rat. J Biomed Sci 14(6):757–765

    Article  Google Scholar 

  19. Czerwinski J, Bartnikowska E, Leontowicz H, Langeb E, Leontowicz M, Katrich E, Trakhtenbergd S, Gorinstein S (2004) Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol containing diets. J Nutr Biochem 15:622–629

    Article  CAS  Google Scholar 

  20. Oschry Y, Eisenberg S (1982) Rat plasma lipoproteins: re-evaluation of a lipoprotein system devoid of cholestryl ester transfer activity. J Lipid Res 23:1099–1106

    CAS  Google Scholar 

  21. Christie W (1985) Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res 26:507–512

    CAS  Google Scholar 

  22. Itou K, Akahane Y (2010) Effect of extracts from narezushi, a fermented mackerel product, on cholesterol metabolism in wistar rats. J Food Sci Technol 76:537–546

    CAS  Google Scholar 

  23. Frota K, Mendonça S, Saldiva R, Cruz R, Arêas J (2008) Cholesterol-lowering properties of whole cowpea seed and its protein isolate in hamsters. J. Food Sci 73(9):235–240

    Article  Google Scholar 

  24. Roach P, Balasubramaniam S, Hirata F, Abbey M, Szanto A, Simons L, Nestel P (1993) The low-density lipoprotein receptor and cholesterol synthesis are affected differently by dietary cholesterol in the rat. Biochim Biophys Acta 1170:165–172

    Article  CAS  Google Scholar 

  25. Qureshi A, Lehmann J, Peterson D (1996) Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J Nutr 126:1972–1978

    CAS  Google Scholar 

  26. Howard A, Udenigwe C (2013) Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolidaemia. Food Funct 4:40–51

    Article  CAS  Google Scholar 

  27. Kok F, van Poppel G, Melse J, Verheul E, Schouten E, Kruyssen D, Hofman A (1991) Do antioxidants and polyunsaturated fatty acids have a combined association with coronary atherosclerosis? Atherosclerosis 86(1):85–90

    Article  CAS  Google Scholar 

  28. Prasad K, Kalra J (1989) Experimental atherosclerosis and oxygen free radicals. Angiology 40:835–843

    Article  CAS  Google Scholar 

  29. Gupta V, Lahiri S, Sultana S, Tulsawani T, Kumar R (2010) Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C–H–R) exposure and post-stress recovery. Food Chem Toxicol 48:1019–1025

    Article  CAS  Google Scholar 

  30. Tsai C (1975) Lipid peroxidation and glutathione peroxidase activity in the liver of cholesterol-fed rats. J Nutr 105:946–951

    CAS  Google Scholar 

  31. Wang D, Wang L, Zhu F, Zhu J, Chen X, Zou L, Saito M, Li L (2008) In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of douchi (a traditional Chinese salt-fermented soybean food). Food Chem 107:1421–1428

    Article  CAS  Google Scholar 

  32. Nazeer R, Kumar N, Ganesh R (2012) In vitro and in vivo studies on the antioxidant activity of fish peptide isolated from the croaker (Otolithes ruber) muscle protein hydrolysate. Peptides 35:261–268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by an Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina) project (PICT 2007-1119) and a CONICET project (PIP 2008-01330). Authors Rinaldi, Añón and Tironi are members of CONICET (Argentina). Authors want to thank to Nilda Reinaudi (Facultad de Agronomía, UNLPam, Argentina) and Guillermo Peiretti (Facultad de Agronomía, UNRC, Argentina) for the provision of amaranth seeds, and to Cátedra de Nutrición y Bromatología (Facultad de Farmacia y Bioquímica, UBA, Argentina) for the collaboration in the diets preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria A. Tironi.

Ethics declarations

Conflict of Interest

M. B. Lado declares that she has no conflict of interest.

J. Burini declares that she has no conflict of interest.

G. Rinaldi declares that she has no conflict of interest.

M. C. Añón declares that she has no conflict of interest.

V. Tironi declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lado, M.B., Burini, J., Rinaldi, G. et al. Effects of the Dietary Addition of Amaranth (Amaranthus mantegazzianus) Protein Isolate on Antioxidant Status, Lipid Profiles and Blood Pressure of Rats. Plant Foods Hum Nutr 70, 371–379 (2015). https://doi.org/10.1007/s11130-015-0516-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0516-3

Keywords

Navigation