Skip to main content
Log in

Antioxidant Properties of Amaranthus hypochondriacus Seeds and their Effect on the Liver of Alcohol-Treated Rats

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Amaranth constitutes a valuable pseudocereal, due to its nutritional quality and its nutraceutical properties, which contribute to improve human health. This work evaluated the effect of a diet based on Amaranthus hypochondriacus (Ah) seed on oxidative stress and antioxidant status in the liver of rats sub-chronically exposed to ethanol. The seed extract was investigated for antioxidant capacity in vitro, showing an adequate content of total phenols and antioxidant activity elevated. For in vivo assays, four groups of six rats each were fed with an AIN-93 M diet for 28 days. In groups III and IV casein was replaced by Ah as the protein source; groups II and IV were received ethanol in the drinking water (20% v/v). When comparing groups IV and II, the following was observed: significant decrease in the activity of aspartate aminotransferase and content of malondialdehyde (p < 0.001) in serum; decrease of malondialdehyde and increase in the activity and gene expression of Cu,Zn-superoxide dismutase, also, decrease in the NADPH oxidase transcript levels (p < 0.05) in liver. Our data suggest that Ah is a good source of total phenols and exerts a protective effect in serum and in liver of rats intoxicated with ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogense

Ah :

Amaranthus hypochondriacus

ALP:

alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BHT:

Buthylated hydroxy toluene

CAT:

Catalase

CYP2E1:

Cytochrome P450-2E1

DNPH:

2,4-dinitrophenylhidrazine

DPPH:

1,1-diphenyl-2-picrylhydrazyl

GGT:

Gamma glutamyl transferase

GPx:

Glutathione peroxidase

MDA:

Malondialdehyde

M-MLV:

Moloney Murine Leukemia Virus Reverse Transcriptase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NO test:

Scavenging activity against nitric oxide

NOX:

NADPH oxidase

PCR:

Polymerase chain reaction

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSA:

Radical scavenging activity

RT:

Reverse transcription

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric Acid Reactive Substances

TMP:

1,1,3,3-tetramethoxypropane

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  2. Cuevas-Rodríguez EO, Dia VP, Yousef GG, García-Saucedo PA, López-Medina J, Paredes-López O, Gonzalez de Mejia E, Lila MA (2010) Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts. J Agric Food Chem 58(17):9542–9548

    Article  Google Scholar 

  3. Nanji AA, Griniuviene B, Sadrzadeh SM, Levitsky S, McCully JD (1995) Effect of type of dietary fat and ethanol on antioxidant enzyme mRNA induction in rat liver. J Lipid Res 36(4):736–744

    CAS  Google Scholar 

  4. Liu RH (2003) Health benefits of fruits and vegetables are from additive and synergistic combination of phytochemicals. Am J Clin Nutr 78:517S–520S

    CAS  Google Scholar 

  5. Bressani R (2003) Amaranth. In: Caballero B (ed), Encyclopedia of Food Sciences and Nutrition, 2nd edn. Elsevier, Maryland, pp 166–173

    Chapter  Google Scholar 

  6. Pedersen HA (2010) Synthesis and quantitation of six phenolic amides in Amaranthus spp. J Agric Food Chem 58:6306–6311

    Article  CAS  Google Scholar 

  7. Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value of pseudocereals and their increasing use as functional gluten free ingredients. Int J Food Sci Nutr 60(4):240–257

    Article  CAS  Google Scholar 

  8. Vinson JA, Proch J, Bose P (2001) Determination of the quantity and quality of polyphenol antioxidants in foods and beverages. Methods Enzymol 335:103–114

    Article  CAS  Google Scholar 

  9. Emmons CL, Peterson DM, Paul GL (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem 47:4894–4898

    Article  CAS  Google Scholar 

  10. Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904

    CAS  Google Scholar 

  11. Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116(5):865–869

    CAS  Google Scholar 

  12. Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardès-Albert M (1994) Antioxidant action of Ginkgo biloba extracts EGb 761. Methods Enzymol 234:462–475

    Article  CAS  Google Scholar 

  13. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80(4):1144–1152

    Article  CAS  Google Scholar 

  14. Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  CAS  Google Scholar 

  15. Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem Anal 13:8–17

    Article  CAS  Google Scholar 

  16. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 Purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  17. Vengeliene V, Vollmayr B, Henn FA, Spanagel R (2005) Voluntary alcohol intake in two rat lines selectively bred for learned helpless and non-helpless behavior. Psychopharmacology 178(2–3):125–132

    Article  CAS  Google Scholar 

  18. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  Google Scholar 

  19. Reznick AZ, Packer L (1994) Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  Google Scholar 

  20. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  21. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein. J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  22. Flohé L, Otting F (1984) Superoxide assays. Methods Enzymol 105:93–104

    Article  Google Scholar 

  23. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  Google Scholar 

  24. Snedecor GW, Cochran WG (1980) Statistical Methods, 7th edn. Iowa State University Press, Ames

    Google Scholar 

  25. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life: a review. Plant Foods Hum Nutr 65:299–308

    Article  Google Scholar 

  26. Czerwinski J, Bartnikowska E, Leontowicz H, Lange E, Leontowicz M, Katrich E, Trakhtenberg S, Gorinstein S (2004) Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol containing diets. J Nutr Biochem 15:622–629

    Article  CAS  Google Scholar 

  27. Taylor LP, Briggs WR (1990) Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell 2:115–127

    Article  CAS  Google Scholar 

  28. Dube A, Bharti S, Laloraya MM (1992) Inhibition of anthocyanin synthesis by cobaltous ions in the first internode of Sorghum bicolor L. Moench. J Exp Bot 43(10):1379–1382

    Article  CAS  Google Scholar 

  29. Nsimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106(2):760–766

    Article  Google Scholar 

  30. McDonough KH (2003) Antioxidant nutrients and alcohol. Toxicology 189:89–97

    Article  CAS  Google Scholar 

  31. Dalle Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  Google Scholar 

  32. Morifuji M, Aoyama Y (2002) Dietary orotic acid affects antioxidant enzyme mRNA levels and oxidative damage to lipids and proteins in rat liver. J Nutr Biochem 13:403–410

    Article  CAS  Google Scholar 

  33. Eom S-Y, Zhang YW, Ogawa M, Oyama T, Isse T, Kang J-W, Lee C-J, Kim Y-D, Kawamoto T, Kim H (2007) Activities of antioxidant enzymes induced by ethanol exposure in aldehyde dehydrogenase 2 knockout mice. J Health Sci 53(4):378–381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Engineer Guillermo Peiretti (Professor of the Agronomical and Veterinary Sciences Department National University of Rio Cuarto) for kindly providing the seeds employed in this work, obtained as an original variety from an experimental cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Lilian Escudero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucero López, V.R., Razzeto, G.S., Giménez, M.S. et al. Antioxidant Properties of Amaranthus hypochondriacus Seeds and their Effect on the Liver of Alcohol-Treated Rats. Plant Foods Hum Nutr 66, 157–162 (2011). https://doi.org/10.1007/s11130-011-0218-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-011-0218-4

Keywords

Navigation