Skip to main content

Advertisement

Log in

Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Fine roots play a major role in the global carbon cycle through respiration, exudation and decomposition processes, but their dynamics are poorly understood. Current estimates of root dynamics have principally been observed in shallow soil horizons (<1 m), and mainly in forest systems. We studied walnut (Juglans regia × nigra L.) fine root dynamics in an agroforestry system in a Mediterranean climate, with a focus on deep soils (down to 5 m), and root dynamics throughout the year.

Methods

Sixteen minirhizotron tubes were installed in a soil pit, at depths of 0.0–0.7, 1.0–1.7, 2.5–3.2 and 4.0–4.7 m and at two distances from the nearest trees (2 and 5 m). Fine root (diameter ≤ 2 mm) dynamics were recorded across three diameter classes every 3 weeks for 1 year to determine their phenology and turnover in relation to soil depth, root diameter and distance from the tree row.

Results

Deep (>2.5 m) root growth occurred at two distinct periods, at bud break in spring and throughout the winter i.e., after leaf fall. In contrast, shallow roots grew mainly during the spring-summer period. Maximum root elongation rates ranged from 1 to 2 cm day−1 depending on soil depth. Most root mortality occurred in upper soil layers whereas only 10 % of fine roots below 4 m died over the study period. Fine root lifespan was longer in thicker and in deeper roots with the lifespan of the thinnest roots (0.0–0.5 mm) increasing from 129 days in the topsoil to 190 at depths > 2.5 m.

Conclusions

The unexpected growth of very deep fine roots during the winter months, which is unusual for a deciduous tree species, suggests that deep and shallow roots share different physiological strategies and that current estimates based on the shortest root growth periods (i.e., during spring and summer) may be underestimating root production. Although high fine root turnover rates might partially result from the minirhizotron approach used, our results help gain insight into some of the factors driving soil organic carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003) Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytol 158:489–501

    Article  Google Scholar 

  • Andrianarisoa KS, Dufour L, Bienaime S, Zeller B, Dupraz C (2015) The introduction of hybrid walnut trees (Juglans nigra x regia cv. NG23) into cropland reduces soil mineral N content in autumn in southern France. Agrofor Syst, in press

  • Baddeley JA, Watson CA (2005) Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant Soil 276:15–22

    Article  CAS  Google Scholar 

  • Balandier P, Dupraz C (1999) Growth of widely spaced trees. A case study from young agroforestry plantations in France. Agrofor Syst 99:151–167

    Google Scholar 

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28:1261–1263

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration, 2nd ed, 340p. Springer Verlag Berlin Heidelberg, Berlin

    Book  Google Scholar 

  • Bergeron M, Lacombe S, Bradley RL, Whalen J, Cogliastro A, Jutras MF, Arp P (2011) Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agrofor Syst 83:321–330

    Article  Google Scholar 

  • Beyer F, Hertel D, Jung K, Fender AC, Leuschner C (2013) Competition effects on fine root survival of Fagus sylvatica and Fraxinus excelsior. For Ecol Manag 302:14–22

    Article  Google Scholar 

  • Binkley D (2015) Ecosystems in four dimensions. New Phytol 206:883–885

    Article  PubMed  Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372

    Article  CAS  Google Scholar 

  • Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2004) Poplar (Populus spp) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agrofor Syst 63:157–169

    Article  Google Scholar 

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    Article  CAS  Google Scholar 

  • Cardinael R, Mao Z, Prieto I, Stokes A, Dupraz C, Kim JH, Jourdan C (2015a) Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 391:219–235

    Article  CAS  Google Scholar 

  • Cardinael R, Chevallier T, Barthès BG, Saby NPA, Parent T, Dupraz C, Bernoux M, Chenu C (2015b) Impact of agroforestry on stocks, forms and spatial distribution of soil organic carbon - A case study in a Mediterranean context. Geoderma 259–260:288–299

    Article  Google Scholar 

  • Chantereau J, Goislot K, Albaric L, Thellier T, Fabre D (2012) Synchronism between adventitious root and leaf development in hydroponic sorghum. J SAT Agric Res 10:1–5

    Google Scholar 

  • Chaudhry AK, Khan GS, Siddiqui MT, Akhtar M, Aslam Z (2003) Effect of arable crops on the growth of poplar (Populus deltoides) tree in agroforestry system. Pak J Agric Sci 40:82–85

    Google Scholar 

  • Cheng W, Coleman DC, Box JE Jr (1991) Measuring root turnover using the minirhizotron technique. Agric Ecosyst Environ 34:261–267

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra DD, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. PNAS 108:8311–8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J Roy Stat Soc B 34:187–220

    Google Scholar 

  • Crawley MJ (2012) The R Book, Second Edition. 27. Survival analysis. Wiley, 1218 p.

  • Desrochers A, Landhäusser SM, Lieffers VJ (2002) Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiol 22:725–732

    Article  PubMed  Google Scholar 

  • Dufour L, Metay A, Talbot G, Dupraz C (2013) Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J Agron Crop Sci 199:217–227

    Article  Google Scholar 

  • Dupraz C, Fournier C, Balvay Y, Dauzat M, Pesteur S, Simorte V (1999) Influence de quatre années de culture intercalaire de blé et de colza sur la croissance de noyers hybrides en agroforesterie. Bois et Fôrets des Agriculteurs Actes du colloque de Clermont-Ferrand 20:95–114

    Google Scholar 

  • Dupraz C, Liagre F (2008) Agroforesterie, des arbres et des cultures. Editions France-Agricole, Paris, p 413

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Espeleta JF, West JB, Donovan LA (2009) Tree species fine-root demography parallels habitat specialization across a sandhill soil resource gradient. Ecology 90:1773–1787

    Article  PubMed  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56

    Article  CAS  Google Scholar 

  • Gavaland A, Burnel L (2005) Croissance et biomasse aérienne de noyers noirs. Chambres d’agriculture 945:20–21

    Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2008) Estimating fine root turnover in tropical forests along an elevational transect using minirhizotrons. Biotropica 40(536):542

    Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008a) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    PubMed  Google Scholar 

  • Guo D, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745

    Article  CAS  Google Scholar 

  • Guo DL, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361:59–61

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J Ecol 84:167–176

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2007) World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytol 172:523–535

    Article  CAS  PubMed  Google Scholar 

  • Jourdan C, Silva EV, Gonçalves JLM, Ranger J, Moreira RM, Laclau J-P (2008) Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. For Ecol Manag 256:396–404

    Article  Google Scholar 

  • Keel SG, Campbell CD, Högberg MN, Richter A, Wild B, Zhou X, Hurry V, Linder S, Näsholm T, Högberg P (2012) Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytol 194:972–981

    Article  PubMed  Google Scholar 

  • Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc Lond 367:1589–1597

    Article  CAS  Google Scholar 

  • Khan GS, Chaudhry AK (2007) Effect of spacing and plant density on the growth of poplar (Populus deltoides) trees under agro-forestry system. Pak J Agric Sci 44:321–327

    Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Leshem B (1965) The annual activity of intermediary roots of the aleppo pine. For Sci 11:291–298

    Google Scholar 

  • Leshem B (1970) Resting roots of Pinus halepensis: structure, function, and reaction to water stress. Bot Gaz 131:99–104

    Article  Google Scholar 

  • Leuschner C (1998) Water extraction by tree fine roots in the forest floor of a temperate Fagus-Quercus forest. Ann Sci For 55:141–157

    Article  Google Scholar 

  • Livesley SJ, Gregory PJ, Buresh RJ (2000) Competition in tree row agroforestry systems. Distribution and dynamics of fine root length and biomass. Plant Soil 227:149–161

    Article  CAS  Google Scholar 

  • López B, Sabaté S, Gracia C (1998) Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18:601–606

    Article  PubMed  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454

    Article  CAS  Google Scholar 

  • M’bou AT, Jourdan C, Deleporte P, Nouvellon Y, Saint-André L, Bouillet J-P, Mialoundama F, Mabiala A, Epron D (2008) Root elongation in tropical Eucalyptus plantations: effect of soil content. Ann For Sci 65:609–609

    Article  Google Scholar 

  • Maeght J-L, Rewald B, Pierret A (2013) How to study deep roots-and why it matters. Front Plant Sci 4:299. doi:10.3389/fpls.2013.00299

    Article  PubMed  PubMed Central  Google Scholar 

  • Mainiero R, Kazda M (2006) Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. For Ecol Manag 237:135–142

    Article  Google Scholar 

  • Majdi H, Andersson P (2005) Fine root production and turnover in a norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems 8:191–199

    Article  CAS  Google Scholar 

  • Majdi H, Damm E, Nylund J-E (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150:195–202

    Article  Google Scholar 

  • Majdi H, Pregitzer K, Morén A-S, Nylund J-E, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8

    Article  CAS  Google Scholar 

  • Mao Z, Bonis ML, Rey H, Saint-André L, Stokes A, Jourdan C (2013a) Which processes drive fine root elongation in a natural mountain forest ecosystem? Plant Ecol Divers 6:231–243

    Article  Google Scholar 

  • Mao Z, Jourdan C, Bonis ML, Pailler F, Rey H, Saint-André L, Stokes A (2013b) Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis. Plant Soil 363:357–382

    Article  CAS  Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • McClaugherty CA, Aber JD (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Article  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2014) Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95:2224–2235

    Article  PubMed  Google Scholar 

  • McCormack ML, Guo D (2014) Impacts of environmental factors on fine root lifespan. Funct Plant Ecol 5:205. doi:10.3389/fpls.2014.00205

    Google Scholar 

  • McCormack ML, Gaines KP, Pastore M, Eissenstat DM (2015) Early season root production in relation to leaf production among six diverse temperate tree species. Plant Soil 398:121–129

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14:2081–2095

    Article  Google Scholar 

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  • Misson L, Gershenson A, Tang J, McKay M, Cheng W, Goldstein A (2006) Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest. Tree Physiol 26:833–844

    Article  CAS  PubMed  Google Scholar 

  • Mulia R, Dupraz C (2006) Unusual fine root distributions of two deciduous tree species in southern France: what consequences for modelling of tree root dynamics? Plant Soil 281:71–85

    Article  CAS  Google Scholar 

  • Mulia R, Dupraz C, Van Noordwijk M (2010) Reconciling root plasticity and architectural ground rules in tree root growth models with voxel automata. Plant Soil 337:77–92

    Article  CAS  Google Scholar 

  • Muñoz F, Beer J (2001) Fine root dynamics of shaded cacao plantations in Costa Rica. Agrofor Syst 51:119–130

    Article  Google Scholar 

  • Oelbermann M, Paul Voroney R, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Pregitzer K, King J, Burton A, Brown S (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

    Article  Google Scholar 

  • Radin JW, Parker LL, Sell CR (1978) Partitioning of sugar between growth and nitrate reduction in cotton roots. Plant Physiol 62:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Richter DB, Billings SA (2015) ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol 206:900–912

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Satomura T, Fukuzawa K, Horikoshi T (2007) Considerations in the study of tree fine-root turnover with minirhizotrons. Plant Root 1:34–45

    Article  Google Scholar 

  • Schroth G, Zech W (1995) Above- and below-ground biomass dynamics in a sole cropping and an alley cropping system with Gliricidia sepium in the semi-deciduous rainforest zone of west Africa. Agrofor Syst 31:191–198

    Article  Google Scholar 

  • Solomon S, Plattnerb GK, Knuttic R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somarriba E (1992) Revisiting the past: an essay on agroforestry definition. Agrofor Syst 19:233–240

    Article  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    Article  CAS  PubMed  Google Scholar 

  • Talbot G, Roux S, Graves A, Dupraz C, Marrou H, Wery J (2014) Relative yield decomposition: a method for understanding the behaviour of complex crop models. Environ Model Softw 51:136–148

    Article  Google Scholar 

  • Therneau T (2014) A package for survival analysis in S. R package version 2.37-7

  • Tian X, Doerner P (2013) Root resource foraging: does it matter? Front Plant Sci 4:1–4

    Article  CAS  Google Scholar 

  • Tierney GL, Fahey TJ (2001) Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil 229:167–176

    Article  CAS  Google Scholar 

  • Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. Comptes rendus de l’Académie des sciences. Série III. Sci de la vie 323:1009–1017

    CAS  Google Scholar 

  • Tully KL, Lawrence D, Scanlon MT (2012) More trees less loss: nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agric Ecosyst Environ 161:137–144

    Article  CAS  Google Scholar 

  • Varah A, Jones H, Smith J, Potts SG (2013) Enhanced biodiversity and pollination in UK agroforestry systems. J Sci Food Agric 93:2073–2075

    Article  CAS  PubMed  Google Scholar 

  • Waisel T, Eshel A, Beeckman T, Kafkafi U (2002) Plant roots: the hidden half, 3rd edn. Marcel Dekker, Inc., NewYork

    Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882

    Article  Google Scholar 

  • Wells CE, Glenn DM, Eissenstat DM (2002) Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). Am J Bot 89:79–87

    Article  PubMed  Google Scholar 

  • Willaume M, Pagès L (2006) How periodic growth pattern and source/sink relations affect root growth in oak tree seedlings. J Exp Bot 57:815–826

    Article  CAS  PubMed  Google Scholar 

  • Withington JM, Elkin AD, Bułaj B, Olesiński J, Tracy KN, Bouma TJ, Oleksyn J, Anderson LJ, Modrzyński J, Reich PB, Eissenstat DM (2003) The impact of material used for minirhizotron tubes for root research. New Phytol 160:533–544

    Article  Google Scholar 

  • Xia M, Guo D, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–1074

    Article  PubMed  Google Scholar 

  • Young A (1997) Agroforestry for Soil Management. Wallingford UK p. 320

Download references

Acknowledgments

This study was financed by the French ANR funded project ECOSFIX (Ecosystem Services of Roots - Hydraulic Redistribution, Carbon Sequestration and Soil Fixation, ANR-2010-STRA-003-01), by the ADEME funded project AGRIPSOL (Agroforestry for soil protection) and by la Fondation de France. We thank the farmers Mr. Henri and Alain Breton, for their authorization to open the deep pit. We are very grateful to our INRA colleagues Jean-François Bourdoncle, Lydie Dufour, Alain Sellier and Didier Arnal for their help with field and laboratory work and logistics. The Restinclières farm is the property of the Conseil Départemental de l’Hérault, which provides financial support to INRA since 1995 for the monitoring of agroforestry systems, and their support is warmly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Jourdan.

Additional information

Responsible Editor: Peter J. Gregory.

Amandine Germon and Rémi Cardinael contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 28 kb)

Figure S1

Ombrothermic diagram of the study period; monthly mean air temperature (°C) and monthly rainfall (mm). (JPG 2.72 mb)

Figure S2

Mean daily root elongation rate (RER, cm day-1) at a depth of 0.0-0.7 m in the pit and in the plot over time. Vertical bars represent standard deviations (not shown when smaller than the symbol size). (JPG 2.75 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germon, A., Cardinael, R., Prieto, I. et al. Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant Soil 401, 409–426 (2016). https://doi.org/10.1007/s11104-015-2753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2753-5

Keywords

Navigation