Skip to main content
Log in

Strength-length scaling of elementary hemp fibers

  • Published:
Mechanics of Composite Materials Aims and scope

The application of hemp fibers as a reinforcement of composite materials necessitates the characterization of fiber strength scatter and the effect of fiber length on its strength. With this aim, elementary hemp fibers were tested in tension at two different gage lengths. Due to the similar morphology of hemp and flax fibers, the probabilistic strength models derived and verified for the latter were applied to the former. The fiber strength was found to agree with the modified Weibull distribution. The modeling approaches developed for describing the variability of the strength and failure strain of elementary flax fibers are shown to be also applicable to hemp fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Shahzad, “Hemp fibre and its composites – a review,” J. Compos. Mater., 46, 973–986 (2012).

    Article  CAS  Google Scholar 

  2. C. Hill and M. Hughes, “Natural-fibre-reinforced composites. Opportunities and challenges,” J. Biobased Mater. Bioenergy, 4,148–158, (2010).

    Article  CAS  Google Scholar 

  3. J. Summerscales, N. P. J. Dissanayake, A. S. Virk, and W. Hall, “A review of bast fibres and their composites. Part 1 – Fibres as reinforcements,” Compos. A, 41, 1329–1335 (2010).

    Article  Google Scholar 

  4. M. Miao and N. Finn, “Conversion of natural fibres into structural composites,” J. Text. Eng., 54, 165–177, (2008).

    Article  Google Scholar 

  5. G. Bakradze, J. Kajaks, S. Reihmane, R. Krutohvostov, and V. Bulmanis, “The influence of water sorption-desorption cycles on the mechanical properties of composites based on recycled polyolefine and linen yarn production waste,” Mech. Compos. Mater., 43, 573–578 (2007).

    Article  CAS  Google Scholar 

  6. K. L. Pickering, G. W. Beckermann, S. N. Alam, and N. J. Foreman, “Optimising industrial hemp fibre for composites,” Compos. A, 38, 461–468 (2007).

    Article  Google Scholar 

  7. V. Placet, “Characterization of the thermo-mechanical behaviour of hemp fibres intended for the manufacturing of high performance composites,” Compos. A, 40, 1111–1118, (2009).

    Article  Google Scholar 

  8. J. Andersons and R. Joffe, “Mechanical damage characteristics of elementary hemp fibers and the scale effect of fiber strength,” High Performance Structure and Materials. VI. Trans. on the Built Environment, 124, 157–167 (2012).

    Article  Google Scholar 

  9. J.-M. Park, S. T. Quang, B.-S. Hwang, and K. L. DeVries, “Interfacial evaluation of modified jute and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission,” Compos. Sci. Technol., 66, 2686–2699 (2006).

    Article  CAS  Google Scholar 

  10. J. A. Gutans and V. P. Tamuzh, “Scale effect of the Weibull distribution of fibre strength,” Mech. Compos. Mater., 20, 1107–1109 (1984). (in Russian).

    Google Scholar 

  11. A. S. Watson and R. L. Smith, “An examination of statistical theories for fibrous materials in the light of experimental data,” J. Mater. Sci., 20, 3260–3270 (1985).

    Article  Google Scholar 

  12. J. Andersons, E. Spārniņš, R. Joffe, and L. Wallström, “Strength distribution of elementary flax fibres,” Compos. Sci. Technol., 65, 693–702 (2005).

    Article  CAS  Google Scholar 

  13. Z. P. Xia, J. Y. Yu, L. D. Cheng, L. F. Liu, and W. M. Wang, “Study on the breaking strength of jute fibres using a modified Weibull distribution,” Compos. A, 40, 54–59 (2009).

    Article  Google Scholar 

  14. W. A. Curtin, “Tensile strength of fiber-reinforced composites: III. Beyond the traditional Weibull model for fiber strengths,” J. Compos. Mater., 34, 1301–1332 (2000).

    CAS  Google Scholar 

  15. M.-H. Berger and D. Jeulin, “Statistical analysis of the failure stresses of ceramic fibres: dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density,” J. Mater. Sci., 38, 2913–2923 (2003).

    Article  CAS  Google Scholar 

  16. M. Hughes, “Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites,” J. Mater. Sci., 47, 599–609 (2012).

    Article  CAS  Google Scholar 

  17. J. Andersons, E. Poriķe, and E. Spārniņš, “The effect of mechanical defects on the strength distribution of elementary flax fibers,” Compos. Sci. Technol., 69, 2152–2157 (2009).

    Article  CAS  Google Scholar 

  18. J. Andersons, E. Spārniņš, and E. Poriķe, “Strength and damage of elementary flax fibers extracted from tow and long line flax,” J. Compos. Mater., 43, 2653–2664 (2009).

    Article  Google Scholar 

  19. L. G. Thygesen, “The effects of growth conditions and of processing into yarn on dislocations in hemp fibres,” J. Mater. Sci., 46, 2135–2139 (2011).

    Article  CAS  Google Scholar 

  20. L. G. Thygesen and M. R. Asgharipour, “The effects of growth and storage conditions on dislocations in hemp fibres,” J. Mater. Sci., 43, 3670–3673 (2008).

    Article  CAS  Google Scholar 

  21. L. G. Thygesen, M. Eder, and I. Burgert, “Dislocations in single hemp fibres -investigations into the relationship of structural distortions and tensile properties at the cell wall level,” J. Mater. Sci., 42, 558–564 (2007).

    Article  CAS  Google Scholar 

  22. D. Dai and M. Fan, “Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy,” Vibrational Spectroscopy, 55, 300–306 (2011).

    Article  CAS  Google Scholar 

  23. D. Dai and M. Fan, “Characteristic and performance of elementary hemp fibre,” Mater. Sci. Appl., 1, 336–342 (2010).

    CAS  Google Scholar 

  24. M. Aslan, G. Chinga-Carrasco, B.F. Sørensen, and B. Madsen, “Strength variability of single flax fibres,” J. Mater. Sci., 46, 6344–6354 (2011).

    Article  CAS  Google Scholar 

  25. A. Le Duc, B. Vergnes, and T. Budtova, “Polypropylene/natural fibres composites: analysis of fibre dimensions after compounding and observations of fibre rupture by rheo-optics,” Compos. A, 42, 1727–1737 (2011).

    Article  Google Scholar 

  26. A. Bourmaud and C. Baley, “Rigidity analysis of polypropylene/vegetal fibre composites after recycling,” Polym. Degrad. Stabil., 94, 297–305 (2009).

    Article  CAS  Google Scholar 

  27. S. J. Eichhorn and R.J. Young, “Composite micromechanics of hemp fibres and epoxy resin microdroplets,” Compos. Sci. Technol., 64, 767–772 (2004).

    Article  CAS  Google Scholar 

  28. A. Duval, A. Bourmaud, L. Augier, and C. Baley, “Influence of the sampling area of the stem on the mechanical properties of hemp fibers,” Mater. Lett., 65, 797–800 (2011).

    Article  CAS  Google Scholar 

  29. J. Andersons, E. Poriķe, and E. Spārniņš, “Limit strain and deformability of elementary flax fibers,” J. Strain Anal. Eng. Design, 46, 428–435 (2011).

    Article  Google Scholar 

  30. V. Placet, F. Trivaudey, O. Cisse, V. Gucheret-Retel, and M. L. Boubakar, “Diameter dependence of the apparent tensile modulus of hemp fibres: A morphological, structural or ultrastructural effect?” Compos. A, 43, 275–287 (2012).

    Article  CAS  Google Scholar 

  31. W. Hu, M.-T. Ton-That, F. Perrin-Sarazin, and J. Denault, “An improved method for single fiber tensile test of natural fibers,” Polym. Eng. Sci., 50, 819–825 (2010).

    Article  CAS  Google Scholar 

  32. J. L. Thomason, J. Carruthers, J. Kelly, and G. Johnson, “Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterization,” Compos. Sci. Technol., 71, 1008–1015 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by ERDF via project 2010/0290/2DP/2.1.1.1.0/10/APIA/VIAA/053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andersons.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 1, pp. 101-112, January-February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poriķe, E., Andersons, J. Strength-length scaling of elementary hemp fibers. Mech Compos Mater 49, 69–76 (2013). https://doi.org/10.1007/s11029-013-9322-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9322-x

Keywords

Navigation