Skip to main content
Log in

Thermal and FTIR spectral studies of N,N′-diphenylguanidine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of N,N′-diphenylguanidine (DPG) was investigated by simultaneous TG/DSC-FTIR techniques under nonisothermal conditions. Online FTIR measurements illustrate that aniline is a major product of DPG decomposition. The observation that the activation energy depends on the extent of conversion indicates that the DPG decomposition kinetics features multiple processes. The initial elimination of aniline from DPG involves two pathways because of the isomerization of DPG. Mass spectrometry and thin film chromatography suggest that there are two major intermediate products with the major one of C21N3H17. The most probable kinetic model deduced through multivariate nonlinear regression method agrees well with the experimental data with a correlation coefficient of 0.9998. The temperature-independent function of conversion f(α), activation energy E and the pre-exponential factor A of DPG decomposition was also established through model-fitting method in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sadequl AM, Ishiaku US, Poh BT. Cure index and activation energy of ENR 25 compared with SMR L in various vulcanization systems. Eur Polym J. 1999;35:711–9.

    Article  CAS  Google Scholar 

  2. Kanne DB, Dick RA, Tomizawa M, Casida JE. Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem Res Toxicol. 2005;18:1479–84.

    Article  CAS  Google Scholar 

  3. Otón F, Tárraga A, Molina P. A bis-guanidine-based multisignaling sensor molecule that displays redox-ratiometric behavior or fluorescence enhancement in the presence of anions and cations. Org Lett. 2006;8:2107–10.

    Article  Google Scholar 

  4. Russell VA, Evans CC, Li WJ, Ward MD. Nanoporous molecular sandwiches: bonded networks with adjustable porosity. Science. 1997;276:575–9.

    Article  CAS  Google Scholar 

  5. Schmidtchen FP, Berger M. Artificial organic host molecules for anions. Chem Rev. 1997;97:1609–46.

    Article  CAS  Google Scholar 

  6. Kita T, Georgieva A, HashimotoY Nakata T, Nagasawa K. C 2-symmetric chiral pentacyclic guanidine: a phase-transfer catalyst for the asymmetric alkylation of tert-butyl glycinate Schiff base. Angew Chem Int Ed. 2002;41:2832–4.

    Article  CAS  Google Scholar 

  7. Allingham MT, Howard-Jones A, Murphy PJ, Thomas DA, Caulkett PWR. Synthesis and applications of C 2-symmetric guanidine bases. Tetrahedron Lett. 2003;44:8677–80.

    Article  CAS  Google Scholar 

  8. Terada M, Ube H, Yaguchi Y. Axially chiral guanidine as enantioselective base catalyst for 1,4-Addition reaction of 1,3-dicarbonyl compounds with conjugated nitroalkenes. J Am Chem Soc. 2006;128:1454–5.

    Article  CAS  Google Scholar 

  9. Shen J, Nguyen TT, Goh YP, Ye W, Fu X, Xu J, Tan CH. Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones. J Am Chem Soc. 2006;128:13692–3.

    Article  CAS  Google Scholar 

  10. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science. 1989;244:1360–2.

    Article  CAS  Google Scholar 

  11. Largent BL, Wikstrom H, Gundlach AL, Snyder SH. Structural determinants of sigma receptor affinity. Mol Pharmacol. 1987;32:772–84.

    CAS  Google Scholar 

  12. Guillén Schlippe YV, Hedstrom L. Guanidine derivatives rescue the Arg418Ala mutation of Tritrichomonas foetus IMP dehydrogenase. Biochemistry. 2005;44:16695–700.

    Article  Google Scholar 

  13. Chang LC, Whittaker NF, Bewley CA. Crambescidin 826 and dehydrocrambine A: new polycyclic guanidine alkaloids from the marine sponge Monanchora sp. that inhibit HIV-1 fusion. J Nat Prod. 2003;66:1490–4.

    Article  CAS  Google Scholar 

  14. Pfister T, Wimmer E. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem. 1999;274:6992–7001.

    Article  CAS  Google Scholar 

  15. Dubois SG, Messina J, Maris JM, Huberty J, Glidden DV, Veatch J, Charron M, Hawkins R, Matthay KK. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 2004;22:2452–60.

    Article  CAS  Google Scholar 

  16. Agnew R, Wilson SW, Stratton-Crawley R. Evaluation of flotation performance using variance spectrum analysis. Miner Eng. 1995;8:51–62.

    Article  CAS  Google Scholar 

  17. Bruze M, Kestrup L. Occupational allergic contact dermatitis from diphenylguanidine in a gas mask. Contact Dermatitis. 1994;31:125–6.

    Article  CAS  Google Scholar 

  18. Bempong MA, Hall AV. Reproductive toxicology of 1,3-diphenylguanidine: analysis of induced sperm abnormalities in mice and hamsters and reproductive consequences in mice. J Toxicol Environ Health. 1983;11:869–78.

    Article  CAS  Google Scholar 

  19. Bempong MA, Mantley R. Body fluid analysis of 1,3-diphenylguanidine for mutagenicity as detected by Salmonella strains. J Environ Pathol Toxicol Oncol. 1985;6:293–301.

    CAS  Google Scholar 

  20. Kotler JM, Hinman NW, Richardson CD, Scott JR. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine. J Therm Anal Calorim. 2010;102:23–9.

    Article  CAS  Google Scholar 

  21. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva M. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  22. Bayram H, Önal M, Hamza Y, Sarıkaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101:873–9.

    Article  CAS  Google Scholar 

  23. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485–91.

    Article  CAS  Google Scholar 

  24. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  25. Tanatani A, Yamaguchi K, Azumaya I, Fukutomi R, Shudo K, Kagechika H. N-methylated diphenylguanidines: conformations, propeller-type molecular chirality, and construction of water-soluble oligomers with multi-layered aromatic structures. J Am Chem Soc. 1998;120:6433–42.

    Article  CAS  Google Scholar 

  26. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1963;6:183–95.

    Google Scholar 

  27. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  29. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  30. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  32. Opfermann J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  33. Zhang KL, Hong JH, Cao GH, Zhan D, Tao YT, Cong CJ. The kinetics of thermal dehydration of copper(II) acetate monohy-drate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  34. Durbin J, Watson GS. Testing for serial correlation in least squares regression I. Biometrika. 1950;37:409–28.

    CAS  Google Scholar 

  35. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. In: Bamford CH, Tipper CFH, editors. Comprehensive chemical kinetics. Elsevier, Amsterdam; 1980. p. 340.

Download references

Acknowledgements

This work is supported through NSFC (21073133 and 20843007), Zhejiang Provincial Natural Science Foundation (Y4080177, Y4090248 and Y5100283) and Zhejiang Provincial Ministry of Education (Y200907715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Jin, H.L., Chen, X.A. et al. Thermal and FTIR spectral studies of N,N′-diphenylguanidine. J Therm Anal Calorim 110, 593–599 (2012). https://doi.org/10.1007/s10973-011-1948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1948-0

Keywords

Navigation