Skip to main content
Log in

A comprehensive study on iodine uptake by selected LDH phases via coprecipitation, anionic exchange and reconstruction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We explored the use of selected layered double hydroxides (LDHs) of different compositions and obtained by means of different routes (i.e., coprecipitation, anionic exchange and reconstruction) as iodine/iodate adsorbents. The influence of speciation (iodide vs. iodate) on iodine uptake was rather strong, resulting in much lower iodide incorporation. The Fourier transform of iodine K X-ray absorption edge data (EXAFS) of all iodate-LDHs showed a single I–O scattering path of 1.8 Å. Thermal stability and leaching experiments showed that the incorporated iodate and iodide were rather loosely bound in the interlayer space and were easily released under heating to 180 °C and leaching with Milli-Q water and brine solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raisbeck GM, Yiou F, Zhou ZQ, Kilius LR (1995) 129I from nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France); potential as an oceanographie tracer. J Mar Syst 6:561–570

    Article  Google Scholar 

  2. Fréchou C, Calmet D (2003) 129I in the environment of the La Hague nuclear fuel reprocessing plant from sea to land. J Environ Radioact 70:43–59

    Article  CAS  Google Scholar 

  3. Schwartz MO (2012) Modelling groundwater contamination above a nuclear waste repository at Gorleben, Germany. Hydrogeol J 20:533–546

    Article  CAS  Google Scholar 

  4. Schwartz MO (2009) Modelling groundwater contamination above the Asse 2 medium-level nuclear waste repository, Germany. Environ Earth Sci 59:277–286

    Article  CAS  Google Scholar 

  5. Bracke G (2012) Aspects of final disposal of radioactive waste in Germany. Turk J Earth Sci 21:145–152

    CAS  Google Scholar 

  6. Atkins M, Kindness A, Glasser FP, Gibson I (1990) The use of silver as a selective precipitant for 129I in radioactive waste management. Waste Manag 10:303–308

    Article  CAS  Google Scholar 

  7. Nichols AL, Verpelli M (2008) Handbook of nuclear data for safeguards: database extensions. International Atomic Energy Agency, Vienna

    Google Scholar 

  8. Hou XL, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632:181–196

    Article  CAS  Google Scholar 

  9. Strickert R, Friedman AM, Fried S (1980) Sorption of technetium and iodine radioisotopes by various minerals. Nucl Technol 49:253–266

    CAS  Google Scholar 

  10. Lieser KH, Steinkopff T (1989) Chemistry of radioactive iodine in the hydrosphere and in the geosphere. Radiochim Acta 46:49–55

    CAS  Google Scholar 

  11. Sazarashi M, Ikeda Y, Seki R, Yoshikawa H (1994) Adsorption of I ions on minerals for 129I waste management. J Nucl Sci Technol 31:620–622

    Article  CAS  Google Scholar 

  12. Riebe B, Bors J, Dultz S (2001) Retardation capacity of organophilic bentonite for anionic fission products. J Contam Hydrol 47:255–264

    Article  CAS  Google Scholar 

  13. Rancon D (1988) Comparative study of radioactive iodine behavior in soils under various experimental and natural conditions. Radiochim Acta 44–45:187–193

    Google Scholar 

  14. Fuge R, Johnson CC (1986) The geochemistry of iodine: a review. Environ Geochem Health 8:31–54

    Article  CAS  Google Scholar 

  15. Bors J (1990) Sorption of radioiodine in organo-clays and organo-soils. Radiochim Acta 51:139–143

    CAS  Google Scholar 

  16. Bors J, Gorny A (1992) Studies on the interactions of HDPY-vermiculite with radioiodine. Appl Clay Sci 7:245–250

    Article  CAS  Google Scholar 

  17. Sheppard MI, Thibault DH, McMurry J, Smith PA (1995) Factors affecting the soil sorption of iodine. Water Air Soil Pollut 83:51–67

    Article  CAS  Google Scholar 

  18. Theiss LF, Sear-Hall MJ, Palmer SJ, Frost RL (2012) Zinc aluminium layered double hydroxides for the removal of iodine and iodide from aqueous solutions. Desalin Water Treat 39:166–175

    Article  CAS  Google Scholar 

  19. Ma S, Islam SM, Shim Y, Gu Q, Wang P, Li H, Sun G, Yang X, Kanatzidis MG (2014) Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides. Chem Mater 26:7114–7123

    Article  CAS  Google Scholar 

  20. Ma RZ, Liang JB, Takada K, Sasaki T (2011) Topochemical synthesis of Co-Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J Am Chem Soc 133:613–620

    Article  CAS  Google Scholar 

  21. Aimoz L, Wieland E, Taviot-Gueho C, Dahn R, Vespa M, Churakov SV (2012) Structural insight into iodide uptake by AFm phases. Environ Sci Technol 46:3874–3881

    Article  CAS  Google Scholar 

  22. Sato T, Fujita H, Endo T, Shimada M, Tsunashima A (1988) Synthesis of hydrotalcite-like compounds and their physico-chemical properties. React Solids 5:219–228

    Article  CAS  Google Scholar 

  23. Ding Y, Alpay E (2000) Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem Eng Sci 55:3461–3474

    Article  CAS  Google Scholar 

  24. Barrabés N, Garrido MA, Frare A, Monzón A, Tichit D (2011) Pt-MgZnCuAl hydrotalcite-derived catalysts in the reduction of nitrates using continuous and batch reactors. Catal Today 175:328–337

    Article  CAS  Google Scholar 

  25. Miranda RA, Llorca J, Finocchio E, Ramis G, Medina F, Sueiras JE, Segarra AM (2011) Novel nanohybrid materials based on l-leucine on hydrotalcite clays: asymmetric epoxidation reaction of chalcona. Catal Today 172:48–52

    Article  CAS  Google Scholar 

  26. Kovanda F, Maryšková Z, Kovář P (2011) Intercalation of paracetamol into the hydrotalcite-like host. J Solid State Chem 184:3329–3335

    Article  CAS  Google Scholar 

  27. Bonina FP, Giannossi ML, Medici L, Puglia C, Summa V, Tateo F (2008) Diclofenac-hydrotalcite: in vitro and in vivo release experiments. Appl Clay Sci 41:165–171

    Article  CAS  Google Scholar 

  28. Yu X, Wang J, Zhang M, Yang P, Yang L, Cao D, Li J (2009) One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection. Solid State Sci 11:376–381

    Article  CAS  Google Scholar 

  29. Vega JM, Granizo N, de la Fuente D, Simancas J, Morcillo M (2011) Corrosion inhibition of aluminum by coatings formulated with Al–Zn–vanadate hydrotalcite. Prog Org Coat 70:213–219

    Article  CAS  Google Scholar 

  30. Pérez-Bernal ME, Ruano-Casero RJ, Rives V (2009) Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides. J Solid State Chem 182:2566–2578

    Article  CAS  Google Scholar 

  31. Ahmed AAA, Talib ZA, Hussein MZ (2012) Thermal, optical and dielectric properties of Zn–Al layered double hydroxide. Appl Clay Sci 56:68–76

    Article  CAS  Google Scholar 

  32. Prasanna SV, Kamath PV, Shivakumara C (2010) Interlayer structure of iodide intercalated layered double hydroxides (LDHs). J Colloid Interface Sci 344:508–512

    Article  CAS  Google Scholar 

  33. Rives V (2001) Layered double hydroxides—present and future. Nova Science Publishers Inc, New York

    Google Scholar 

  34. Liang L, Li L (2007) Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. J Radioanal Nucl Chem 273:221–226

    Article  CAS  Google Scholar 

  35. Aimoz L, Taviot-Guého C, Churakov SV, Chukalina M, Dähn R, Curti E, Bordet P, Vespa M (2012) Anion and cation order in iodide-bearing Mg/Zn–Al layered double hydroxides. J Phys Chem C 116:5460–5475

    Article  CAS  Google Scholar 

  36. Maria Bastianini DC, Bisio C, Marchese L, Costantino U, Vivani R, Nocchetti M (2012) On the intercalation of the iodine-iodide couple on layered double hydroxides with different particle sizes. Inorg Chem 51:2560–2568

    Article  CAS  Google Scholar 

  37. Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clay Miner 31:305–311

    Article  CAS  Google Scholar 

  38. Zhang J, Zhang F, Ren L, Evans DG, Duan X (2004) Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions. Mater Chem Phys 85:207–214

    Article  CAS  Google Scholar 

  39. Curtius H, Kaiser G, Rozov K, Neumann A, Dardenne K, Bosbach D (2013) Preparation and characterization of Fe-, Co-, and Ni-containing Mg-Al-layered double hydroxides. Clays Clay Miner 61:424–439

    Article  CAS  Google Scholar 

  40. Iglesias L, Alvarez MG, Chimentao RJ, Leganes JL, Medina F (2014) On the role of ultrasound and mechanical stirring for iodine adsorption by calcined layered double hydroxides. Appl Clay Sci 91–92:70–78

    Article  CAS  Google Scholar 

  41. Filipponi A, Di Cicco A, Natoli CR (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I Theory. Phys Rev B 52:15122–15134

    Article  CAS  Google Scholar 

  42. Filliponi A (1994) The radial distribution function by X-ray absorption spectroscopy. J Phys 6:8415

    Google Scholar 

  43. Metz V, Schüßler W, Kienzler B, Fanghänel T (2004) Geochemically derived non-gaseous radionuclides source term for the Asse salt mine—assessment for the use of a Mg(OH)2-based backfill material. Radiochim Acta 92:819–825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project underlying this research was funded by the Federal Ministry of Education and Research under the project number 02NUK021G promoted. We are grateful to Mr Michael Klatt for the XRD measurements, and to Dr Andreas Scheinost at the Rossendorf Beamline BM20, ESRF, Grenoble, France for the EXAFS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natallia Torapava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, L., Walther, C., Medina, F. et al. A comprehensive study on iodine uptake by selected LDH phases via coprecipitation, anionic exchange and reconstruction. J Radioanal Nucl Chem 307, 111–121 (2016). https://doi.org/10.1007/s10967-015-4285-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4285-0

Keywords

Navigation