Skip to main content
Log in

Layered Double Zinc and Aluminum Hydroxide Intercalated with Hexacyanoferrate(II) Ions for Extraction of U(VI) from Liquid Media

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—Layered double zinc and aluminum hydroxide modified with hexacyanoferrate(II) ions was synthesized for the first time by reverse deposition. The obtained samples were studied by X-ray phase analysis, scanning electron microscopy, and low-temperature nitrogen adsorption, and their sorption characteristics with respect to uranium U(VI) were studied. The sorption capacity for the modified material under static conditions, determined by the Langmuir equation, was \(q_{{\max }}^{{~l}}\) = 156.70 ± 12.38 mg/g (at phase ratio V/m = 1000 mL/g, in a monocomponent solution of uranyl nitrate UO2(NO3)2 at a temperature T = 25°C and sorption time t = 24 h). Layered double zinc and aluminum hydroxide modified with hexacyanoferrate(II) ions is a promising sorbent for purification of liquid media from uranium U(VI) due to its high capacity and specific surface area, the possibility of effective use in a wide range of pH [4, 10], and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mittal, J., J. Environ. Manage., 2021, vol. 295, p. 113017.

    Article  CAS  Google Scholar 

  2. Faisal, A.A.H., Shihab, A.H., Naushad, M., et al., J. Environ. Chem. Eng., 2021, vol. 9, no. 4, p. 105342.

    Article  CAS  Google Scholar 

  3. Farghali, M.A., Selim, A.M., Khater, H.F., et al., Arabian J. Chem., 2022, vol. 15, no. 11, p. 104171.

    Article  CAS  Google Scholar 

  4. Mohiuddin, I., Grover, A., Aulakh, J.S., et al., J. Hazard. Mater., 2021, vol. 401, p. 123782.

    Article  CAS  Google Scholar 

  5. Barabi, A., Seidi, S., Rouhollahi, A., et al., Anal. Chim. Acta, 2020, vol. 1131, p. 90.

    Article  CAS  Google Scholar 

  6. Kim, J., Kang, J., and Um, W., J. Environ. Chem. Eng., 2022, vol. 10, no. 3, p. 107477.

    Article  CAS  Google Scholar 

  7. Mayordomo, N., Rodríguez, D.M., Rossberg, A., et al., Chem. Eng. J., 2021, vol. 408, p. 127265.

    Article  CAS  Google Scholar 

  8. Theiss, F.L., Ayoko, G.A., and Frost, R.L., Chem. Eng. J., 2016, vol. 395, p. 300.

    Article  Google Scholar 

  9. Celik, A., Baker, D.R., Arslan, Z., et al., Chem. Eng. J., 2021, vol. 426, p. 131696.

    Article  CAS  Google Scholar 

  10. Behbahani, E.S., Dashtian, K., and Ghaedi, M., J. Hazard. Mater., 2021, vol. 410, p. 124560.

    Article  CAS  Google Scholar 

  11. Papynov, E.K., Tkachenko, I.A., Majorov, V.Y., et al., Radiochemistry, 2019, vol. 61, no. 1, p. 28.

    Article  CAS  Google Scholar 

  12. Kulyukhin, S.A. and Krasavina, E.P., Radiochemistry, 2016, vol. 58, no. 4, p. 405.

    Article  CAS  Google Scholar 

  13. Kulyukhin, S.A., Krasavina, E.P., and Rumer, I.A., Radiochemistry, 2015, vol. 57, no. 1, p. 69.

    Article  CAS  Google Scholar 

  14. Dran'kov, A.N., Balybina, V.A., Buravlev, I.Y., et al., Russ. J. Inorg. Chem., 2022, vol. 67, no. 9, p. 1478.

    Article  CAS  Google Scholar 

  15. Kulyukhin, S.A. and Krasavina, E.P., Radiochemistry, 2016, vol. 58, no. 4, p. 405.

    Article  CAS  Google Scholar 

  16. Kong, F., Xie, Y., Xia, C., et al., Surf. Interfaces, 2023, vol. 36, p. 102487.

    Article  CAS  Google Scholar 

  17. Wu, S., Liang, H., Zhang, Z., et al., Opt. Mater., 2022, vol. 131, p. 112636.

    Article  CAS  Google Scholar 

  18. Chen, S., Yang, X., and Wang, Z.J., J. Hazard. Mater., 2021, vol. 410, p. 124608.

    Article  CAS  Google Scholar 

  19. Shichalin, O.O., Papynov, E.K., Maiorov, V.Y., et al., Radiochemistry, 2019, vol. 61, no. 2, p. 185.

    Article  CAS  Google Scholar 

  20. Dran'kov, A., Shichalin, O., Papynov, E., et al., Nucl. Eng. Technol., 2022, vol. 54, p. 1991.

    Article  CAS  Google Scholar 

  21. Bouali, A.C., Iuzviuk, M.H., Serdechnova, M., et al., Appl. Surf. Sci., 2019, vol. 501, p. 144027.

    Article  Google Scholar 

  22. Nagaraju, Y.S., Ganesh, H., Veeresha, S., et al., J. Energy Storage, 2022, vol. 56, p. 105924.

    Article  Google Scholar 

  23. Nakate, U.T., Yu, Y.T., and Park, S., Ceram. Int., 2022, vol. 48, p. 28822.

    Article  CAS  Google Scholar 

  24. Lyu, P., Wang, G., Wang, B., et al., Appl. Clay Sci., 2021, vol. 209, p. 106146.

    Article  Google Scholar 

  25. Guo, Y., Gong, Z., Li, X., et al., Chem. Eng. J., 2020, vol. 392, p. 123682.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out within the state task of the Ministry of Science and Higher Education of the Russian Federation, topic FZNS-2023-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Papynov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.P., Drankov, A.N., Papynov, E.K. et al. Layered Double Zinc and Aluminum Hydroxide Intercalated with Hexacyanoferrate(II) Ions for Extraction of U(VI) from Liquid Media. Prot Met Phys Chem Surf 59, 868–875 (2023). https://doi.org/10.1134/S2070205123701058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701058

Keywords:

Navigation