Skip to main content
Log in

A modeling approach for compounds affecting body composition

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Body composition and body mass are pivotal clinical endpoints in studies of welfare diseases. We present a combined effort of established and new mathematical models based on rigorous monitoring of energy intake (EI) and body mass in mice. Specifically, we parameterize a mechanistic turnover model based on the law of energy conservation coupled to a drug mechanism model. Key model variables are fat-free mass (FFM) and fat mass (FM), governed by EI and energy expenditure (EE). An empirical Forbes curve relating FFM to FM was derived experimentally for female C57BL/6 mice. The Forbes curve differs from a previously reported curve for male C57BL/6 mice, and we thoroughly analyse how the choice of Forbes curve impacts model predictions. The drug mechanism function acts on EI or EE, or both. Drug mechanism parameters (two to three parameters) and system parameters (up to six free parameters) could be estimated with good precision (coefficients of variation typically <20 % and not greater than 40 % in our analyses). Model simulations were done to predict the EE and FM change at different drug provocations in mice. In addition, we simulated body mass and FM changes at different drug provocations using a similar model for man. Surprisingly, model simulations indicate that an increase in EI (e.g. 10 %) was more efficient than an equal lowering of EI. Also, the relative change in body mass and FM is greater in man than in mouse at the same relative change in either EI or EE. We acknowledge that this assumes the same drug mechanism impact across the two species. A set of recommendations regarding the Forbes curve, vehicle control groups, dual action on EI and loss, and translational aspects are discussed. This quantitative approach significantly improves data interpretation, disease system understanding, safety assessment and translation across species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L (2004) XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27(1):155–61

    Article  PubMed  CAS  Google Scholar 

  2. Kang JG, Park CY (2012) Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J 36(1):13–25

    Article  PubMed  Google Scholar 

  3. Jusko WJ, Ko HC, Ebling WF (1995) Convergence of direct and indirect pharmacodynamic response models. J Pharmacokinet Biopharm 23:5–8

    Article  PubMed  CAS  Google Scholar 

  4. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic-pharmacodynamic modeling: a new classification of biomarkers. Pharm Res 22(9):1432–7

    Article  PubMed  CAS  Google Scholar 

  5. Guo J, Hall KD (2009) Estimating the continuous-time dynamics of energy and fat metabolism in mice. PLoS Comput Biol 5(9):e1000511

    Article  PubMed  Google Scholar 

  6. Guo J, Hall KD (2011) Predicting changes of body weight, body fat, energy expenditure and metabolic fuel selection in C57BL/6 mice. PLoS One 6(1):e15961

    Article  PubMed  CAS  Google Scholar 

  7. Ellacott KL, Morton GJ, Woods SC, Tso P, Schwartz MW (2010) Assessment of feeding behavior in laboratory mice. Cell Metab 12(1):10–7

    Article  PubMed  CAS  Google Scholar 

  8. Gabrielsson J, Weiner D (2010) Pharmacokinetic & pharmacodynamic, data analysis, concepts and applications, 4th edn. 2nd print, Swedish Pharmaceutical Press, Stockholm. ISBN-139789197651004

  9. Westertep K, Donkers J, Fredrix E, Boekhoudt P (1995) Energy intake, physical activity and body weight: a simulation model. Br J Nutr 73:337–347

    Article  Google Scholar 

  10. Christiansen E, Garby L (2002) Prediction of body weight changes caused by changes in energybalance. Eur J Clin Invest 32:826–30

    Article  PubMed  CAS  Google Scholar 

  11. Christiansen E, Garby L, Sørensen TIA (2005) Quantitative analysis of the energy requirements for development of obesity. J Theor Biol 234:99–106

    Article  PubMed  Google Scholar 

  12. Hall KD (2006) Computational model of in vivo human energy metabolism during semi starvation and refeeding. Am J Physiol Endocrinol Metab 291:E23–27

    Article  PubMed  CAS  Google Scholar 

  13. Chow CC, Hall KD (2008) The dynamics of human body weight change. PLoS Comput Biol 4(3):e1000045

    Article  PubMed  Google Scholar 

  14. Hall KD, Jordan PN (2008) Modeling weight-loss maintenance to help prevent body weight regain. Am J Clin Nutr 88(6):1495–503

    Article  PubMed  CAS  Google Scholar 

  15. Hou C, Zuo W, Moses ME, Woodruff WH, Brown JH, West GB (2008) Energy uptake and allocation during ontogeny. Sci Agric 322(5902):736–9

    Article  PubMed  CAS  Google Scholar 

  16. Thomas DM, Ciesla A, Levine JA, Stevens JG, Martin CK (2009) A mathematical model of weight change with adaptation. Math Biosci Eng 6(4):873–887

    Article  PubMed  Google Scholar 

  17. Landersdorfer CB, DuBois DC, Almon RR, Jusko WJ (2009) Mechanism-based modeling of nutritional and leptin influences on growth in normal and type 2 diabetic rats. J Pharmacol Exp Ther 328(2):644–51

    Article  PubMed  CAS  Google Scholar 

  18. Hall KD (2010) Predicting metabolic adaptation, body weight change, and energy intake in humans. Am J Physiol Endocrinol Metab 298(3):E449–66

    Article  PubMed  CAS  Google Scholar 

  19. Navarro-Barrientos JE, Rivera DE, Collins LM (2011) A dynamical model for describing behavioural interventions for weight loss and body composition change. Math Comput Model Dyn Syst 17(2):183–203

    Article  PubMed  Google Scholar 

  20. Hall KD (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378:826–37

    Article  PubMed  Google Scholar 

  21. Hall KD (2008) What is the required energy deficit per unit weight loss?. Int J Obes (Lond) 32:573–576

    Article  CAS  Google Scholar 

  22. Forbes GB (1987) Lean body mass-body fat interrelationships in humans. Nutr Rev 45:225–231

    Article  PubMed  CAS  Google Scholar 

  23. Forbes GB (2000) Body fat content influences the body composition response to nutrition and exercise. Ann N Y Acad Sci 904:359–365

    Article  PubMed  CAS  Google Scholar 

  24. Hall KD (2010) Mathematical modelling of energy expenditure during tissue deposition. Br J Nutr 104:4–7

    Article  PubMed  CAS  Google Scholar 

  25. Kleiber M (1975) The fire of life: an introduction to animal energetics. Robert E Krieger Publishing Company, Malabar

    Google Scholar 

  26. Guo J, Jou W, Gavrilova O, Hall KD (2009) Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One 4:e5370

    Article  PubMed  Google Scholar 

  27. Johansson CC, Gennemark P, Artursson P, Äbelö A, Ashton M, Jansson-Löfmark R (2013) Population pharmacokinetic modeling and deconvolution of enantioselective absorption of eflornithine in the rat. J Pharmacokinet Pharmacodyn 40(1):117–28

    Article  PubMed  CAS  Google Scholar 

  28. Vickers SP, Jackson HC, Cheetham SC (2011) The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 164(4):1248–62

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gennemark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 268 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gennemark, P., Jansson-Löfmark, R., Hyberg, G. et al. A modeling approach for compounds affecting body composition. J Pharmacokinet Pharmacodyn 40, 651–667 (2013). https://doi.org/10.1007/s10928-013-9337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9337-x

Keywords

Navigation