Skip to main content

Advertisement

Log in

Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling—A New Classification of Biomarkers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In recent years, pharmacokinetic/pharmacodynamic (PK/PD) modeling has developed from an empirical descriptive discipline into a mechanistic science that can be applied at all stages of drug development. Mechanism-based PK/PD models differ from empirical descriptive models in that they contain specific expressions to characterize processes on the causal path between drug administration and effect. Mechanism-based PK/PD models have much improved properties for extrapolation and prediction. As such, they constitute a scientific basis for rational drug discovery and development. In this report, a novel classification of biomarkers is proposed. Within the context of mechanism-based PK/PD modeling, a biomarker is defined as a measure that characterizes, in a strictly quantitative manner, a process, which is on the causal path between drug administration and effect. The new classification system distinguishes seven types of biomarkers: type 0, genotype/phenotype determining drug response; type 1, concentration of drug or drug metabolite; type 2, molecular target occupancy; type 3, molecular target activation; type 4, physiological measures; type 5, pathophysiological measures; and type 6, clinical ratings. In this paper, the use of the new biomarker classification is discussed in the context of the application of mechanism-based PK/PD analysis in drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D. D. Breimer M. Danhof (1997) ArticleTitleRelevance of the application of pharmacokinetic–pharmacodynamic modelling concepts in drug development. The “Wooden Shoe” paradigm Clin. Pharmacokinet. 32 259–267 Occurrence Handle9113436

    PubMed  Google Scholar 

  2. L. B. Sheiner D. R. Stanski S. Voseh R. D. Miller J. Ham (1979) ArticleTitleSimultaneous modelling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine Clin. Pharmacol. Ther. 25 358–371 Occurrence Handle761446

    PubMed  Google Scholar 

  3. J. W. Jonker A. H. Schinkel (2004) ArticleTitlePharmacological and physiological functions of the polyspecific organic cation transporters: OTC1,2 and 3 (SLC22a1–3) J. Pharmacol. Exp. Ther. 308 2–9 Occurrence Handle10.1124/jpet.103.053298 Occurrence Handle14576340

    Article  PubMed  Google Scholar 

  4. J. P. Allen R. F. Brinkhuis L. Deemter ParticleVan J. Wijnholts A. H. Schinkel (2000) ArticleTitleExtensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance Cancer Res. 60 5761–5766 Occurrence Handle11059771

    PubMed  Google Scholar 

  5. M. R. Bouw R. Xie K. Tunblad M. Hammarlund-Udenaes (2001) ArticleTitleBlood–brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling Br. J. Pharmacol. 134 1796–1804 Occurrence Handle10.1038/sj.bjp.0704406 Occurrence Handle11739257

    Article  PubMed  Google Scholar 

  6. J. W. Black P. Leff (1983) ArticleTitleOperational models of pharmacological agonism Proc. R. Soc. London, Ser. B 220 141–162

    Google Scholar 

  7. P. H. Graaf ParticleVan der M. Danhof (1997) ArticleTitleAnalysis of drug–receptor interactions in vivo: a new approach in pharmacokinetic–pharmacodynamic modelling Int. J. Clin. Pharmacol. Ther. 35 442–446 Occurrence Handle9352393

    PubMed  Google Scholar 

  8. P. H. Graaf ParticleVan der E. A. Schaick ParticleVan R. A. A. Mathôt A. P. Ijzerman M. Danhof (1997) ArticleTitleMechanism-based pharmacokineticpharmacodynamic modelling of the effects of N6-cyclopentyladenosine analogues on heart rate in rat: estimation of in vivo operational affinity and efficacy at adenosine A1 receptors J. Pharmacol. Exp. Ther. 283 809–816 Occurrence Handle9353402

    PubMed  Google Scholar 

  9. E. H. Cox T. Kerbusch P. H. Graaf ParticleVan der M. Danhof (1998) ArticleTitlePharmacokinetic–pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat: correlation with the interaction at the μ-opioid receptor J. Pharmacol. Exp. Ther. 284 1095–1103 Occurrence Handle9495871

    PubMed  Google Scholar 

  10. K. P. Zuideveld P. H. Graaf ParticleVan der D. Newgreen R. Thurlow N. Petty P. Jordan L. A. Peletier M. Danhof (2004) ArticleTitleMechanism-based pharmacokinetic–pharmacodynamic modelling of 5-HT1A receptor agonists: estimation of in vivo affinity and intrinsic efficacy J. Pharmacol. Exp. Ther. 308 1012–1020 Occurrence Handle10.1124/jpet.103.059030 Occurrence Handle14718609

    Article  PubMed  Google Scholar 

  11. S. A. G. Visser F. L. C. Wolters J. M. Gubbens-Stibbe E. Tukker P. H. Graaf ParticleVan der L. A. Peletier M. Danhof (2003) ArticleTitleMechanism-based PK/PD modelling of the EEG effects of GABAA receptor modulators: in vitro/in vivo correlations J. Pharmacol. Exp. Ther. 304 88–201 Occurrence Handle10.1124/jpet.102.042341 Occurrence Handle12490579

    Article  PubMed  Google Scholar 

  12. P. H. Graaf ParticleVan der E. A. Schaick ParticleVan S. A. G. Visser H. J. M. M. Greef ParticleDe A. P. Ijzerman M. Danhof (1999) ArticleTitleMechanism-based pharmacokinetic–pharmacodynamic modelling of antilipolytic effects of adenosine A1 receptor agonists in rats: prediction of tissue-dependent efficacy in vivo J. Pharmacol. Exp. Ther. 290 702–709 Occurrence Handle10411581

    PubMed  Google Scholar 

  13. E. H. Cox M. W. E. Langemeijer J. M. Gubbens-Stibbe K. T. Muir M. Danhof (1999) ArticleTitleThe comparative pharmacodynamics of remifentanil and its metabolite GR90291 in a rat electroencephalographic model Anesthesiology 90 535–544 Occurrence Handle10.1097/00000542-199902000-00030 Occurrence Handle9952162

    Article  PubMed  Google Scholar 

  14. M. Garrido J. M. Gubbens-Stibbe H. J. Tukker E. H. Cox J. Freitag Drabbe Künzel Particlevon A. P. Ijzerman M. Danhof P. H. Graaf ParticleVan der (2000) ArticleTitlePharmacokinetic–pharmacodynamic analysis of the EEG effect of alfentanil in rats following β-funaltrexamine-induced μ-opioid receptor knockdown in vivo Pharm. Res. 17 653–659 Occurrence Handle10.1023/A:1007513812018 Occurrence Handle10955836

    Article  PubMed  Google Scholar 

  15. N. L. Dayneka V. Garg W. J. Jusko (1993) ArticleTitleComparison of four basic models of indirect pharmacodynamic responses J. Pharmacokinet. Biopharm. 21 457–478 Occurrence Handle10.1007/BF01061691 Occurrence Handle8133465

    Article  PubMed  Google Scholar 

  16. D. E. Mager E. Wyska W. J. Jusko (2003) ArticleTitleDiversity of mechanism-based pharmacodynamic models Drug Metab. Dispos. 31 510–519 Occurrence Handle10.1124/dmd.31.5.510 Occurrence Handle12695336

    Article  PubMed  Google Scholar 

  17. Y. N. Sun W. J. Jusko (1998) ArticleTitleTransit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics J. Pharm. Sci. 87 732–737 Occurrence Handle10.1021/js970414z Occurrence Handle9607951

    Article  PubMed  Google Scholar 

  18. R. Ramakrishnan D. C. DuBois R. R. Almon N. A. Pyszczynski W. J. Jusko (2002) ArticleTitleFifth generation model for corticosteroid pharmacodynamics: application to steady-state receptor down regulation and enzyme induction patterns during seven day continuous infusion of methylprednisolone in rats J. Pharmacokinet. Pharmacodyn. 29 1–24 Occurrence Handle10.1023/A:1015765201129 Occurrence Handle12194533

    Article  PubMed  Google Scholar 

  19. M. Sandström H. Lindman P. Nygren E. Lidbrink J. Bergh M. O. Karlsson (2005) ArticleTitleModel describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin–docetaxel regimen in breast cancer patients J. Clin. Oncol. 23 413–421 Occurrence Handle10.1200/JCO.2005.09.161 Occurrence Handle15585753

    Article  PubMed  Google Scholar 

  20. M. Wakelkamp G. Alvan J. Gabrielsson G. Paintaud (1996) ArticleTitlePharmacodynamic modelling of furosemide tolerance after multiple intravenous administration Clin. Pharmacol. Ther. 60 75–88 Occurrence Handle10.1016/S0009-9236(96)90170-8 Occurrence Handle8689815

    Article  PubMed  Google Scholar 

  21. M. Movin-Osswald M. Hammarlund-Udenaes (1995) ArticleTitleProlactin release after remoxipride by an integrated pharmacokinetic model with intra- and interindividual aspects J. Pharmacol. Exp. Ther. 274 921–927 Occurrence Handle7636755

    PubMed  Google Scholar 

  22. E. B. Eckblad V. Licko (1984) ArticleTitleA model eliciting transient responses Am. J. Physiol. 264 R114–R121

    Google Scholar 

  23. J. A. Bauer J. P. Balthasar H. L. Fung (1997) ArticleTitleApplication of pharmacodynamic modelling for designing time variant dosing regimens to overcome nitroglycerin tolerance in experimental heart failure Pharm. Res. 14 114–145

    Google Scholar 

  24. A. Äbelö U. G. Eriksson M. O. Karlsson H. Larsson J. Gabrielsson (2000) ArticleTitleA turnover model of irreversible inhibition of gastric acid secretion by omeparzole in the dog J. Pharmacol. Exp. Ther. 295 662–669 Occurrence Handle11046103

    PubMed  Google Scholar 

  25. J. W. Mandema D. R. Wada (1995) ArticleTitlePharmacodynamic model for acute tolerance development to the electroencephalographic effects of alfentanil in the rat J. Pharmacol. Exp. Ther. 279 1035–1042

    Google Scholar 

  26. P. Veng Pedersen N. B. Modi (1993) ArticleTitleA system approach to pharmacodynamics. Input-effect control system analysis of the central nervous system effect of alfentanil J. Pharm. Sci. 82 266–272 Occurrence Handle8450420

    PubMed  Google Scholar 

  27. C. H. Kleinbloesem P. Brummelen ParticleVan J. Harten ParticleVan M. Danhof D. D. Breimer (1987) ArticleTitleRate of increase in plasma concentration as a major determinant of its haemodynamic effects in humans Clin. Pharmacol. Ther. 41 26–30 Occurrence Handle3802702

    PubMed  Google Scholar 

  28. P. Francheteau J. L. Steimer H. Merdjan M. Guerret C. Dubray (1993) ArticleTitleA mathematical model for dynamics of cardiovascular drug action: application to intravenous dihydropyridines in healthy volunteers J. Pharmacokinet. Biopharm. 21 489–514 Occurrence Handle10.1007/BF01059111 Occurrence Handle8145128

    Article  PubMed  Google Scholar 

  29. K. P. Zuideveld H. J. Maas N. Treijtel P. H. Graaf ParticleVan der L. A. Peletier M. Danhof (2001) ArticleTitleA set-point model with oscillatory behaviour predicts the time course of (8-)-OH-DPAT induced hypothermia Am. J. Physiol. 281 R2059–R2071

    Google Scholar 

  30. P. L. Chan N. H. G. Holford (2001) ArticleTitleDrug treatment effects on disease progression Annu. Rev. Pharmacol. Toxicol. 41 625–659 Occurrence Handle10.1146/annurev.pharmtox.41.1.625 Occurrence Handle11264471

    Article  PubMed  Google Scholar 

  31. N. H. G. Holford K. E. Peace (1992) ArticleTitleMethodologic aspects of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine Proc. Natl. Acad. Sci. USA 89 IssueID23 11466–11470 Occurrence Handle1454835

    PubMed  Google Scholar 

  32. T. M. Post, J. I. Freijer, J. de Jongh, and M. Danhof. Disease system analysis: basic disease progression models in degenerative disease. Pharm. Res. 22:1038–1049 (2005).

    Google Scholar 

  33. InstitutionalAuthorNameBiomarker Definitions Working Group (2001) ArticleTitleBiomarkers and surrogate endpoints: preferred definitions and conceptual framework Clin. Pharmacol. Ther. 69 89–95

    Google Scholar 

  34. W. A. Colburn (2003) ArticleTitleBiomarkers in drug discovery and development: from target identification to through drug marketing J. Clin. Pharmacol. 43 329–341 Occurrence Handle10.1177/0091270003252480 Occurrence Handle12723454

    Article  PubMed  Google Scholar 

  35. L. J. Lesko A. J. Atkinson (2001) ArticleTitleUse of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation and strategies Annu. Rev. Pharmacol. Toxicol. 41 347–366 Occurrence Handle10.1146/annurev.pharmtox.41.1.347 Occurrence Handle11264461

    Article  PubMed  Google Scholar 

  36. P. Rolan A. J. Atkinson L. J. Lesko (2003) ArticleTitleUse of biomarkers from drug discovery to clinical practice: report on the ninth European Federation of Pharmaceutical Sciences Conference on Optimizing Drug Development Clin. Pharmacol. Ther. 73 284–291 Occurrence Handle10.1016/S0009-9236(02)17625-9 Occurrence Handle12709718

    Article  PubMed  Google Scholar 

  37. P. R. Jadhav M. U. Mehta J. V. S. Gobburu (2004) ArticleTitleHow biomarkers can improve clinical drug development Am. Pharm. Rev. 7 62–68

    Google Scholar 

  38. C. C. Peck J. Wechsler (2002) ArticleTitleReport of a workshop on confirmatory evidence to support a single clinical trial as a basis for new drug approval Drug Inf. J. 36 517–534

    Google Scholar 

  39. C. C. Peck D. R. Rubin L. B. Sheiner (2003) ArticleTitleHypothesis: a single clinical trial plus causal evidence of effectiveness is sufficient for drug approval Clin. Pharmacol. Ther. 73 481–490 Occurrence Handle10.1016/S0009-9236(03)00018-3 Occurrence Handle12811358

    Article  PubMed  Google Scholar 

  40. P. Rolan (1997) ArticleTitleThe contribution of clinical pharmacology surrogates and models to drug development—a critical appraisal Br. J. Clin. Pharmacol. 44 219–225 Occurrence Handle10.1046/j.1365-2125.1997.t01-1-00583.x Occurrence Handle9296315

    Article  PubMed  Google Scholar 

  41. A. L. Nordstrom L. Farde F. A. Wiesel K. Forslund S. Pauli C. Halldin et al. (1993) ArticleTitleCentral D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients Biol. Psychiatry 33 227–235 Occurrence Handle10.1016/0006-3223(93)90288-O Occurrence Handle8097114

    Article  PubMed  Google Scholar 

  42. E. Snoeck K. Verdonck P. Jacqmin H. Belle Particlevan A. G. Dupont A. Peer Particlevan M. Danhof (1998) ArticleTitlePhysiological red blood cell kinetic model to explain the apparent discrepancy between adenosine breakdown inhibition and nucleoside transporter occupancy of draflazine J. Pharmacol. Exp. Ther. 286 142–149 Occurrence Handle9655853

    PubMed  Google Scholar 

  43. J. C. Scott K. V. Ponganis D. R. Stanski (1985) ArticleTitleEEG quantification of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil Anesthesiology 62 234–241 Occurrence Handle3919613

    PubMed  Google Scholar 

  44. J. C. Scott F. E. Cooke D. R. Stanski (1991) ArticleTitleElectroencephalographic quantification of opioid effect: the comparative pharmacodynamics of fentanyl and sufentanil Anesthesiology 74 34–42 Occurrence Handle1670913

    PubMed  Google Scholar 

  45. T. D. Egan C. F. Minto D. J. Hermann J. Barr K. T. Muir S. L. Shafer (1996) ArticleTitleRemifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics Anesthesiology 84 825–833

    Google Scholar 

  46. D. R. H. Huntjens M. Danhof O. E. Pasqua ParticleDella (2005) ArticleTitlePharmacokinetic–pharmacodynamic correlations and biomarkers in the development of COX-2 inhibitors Rheumatology 44 846–859 Occurrence Handle10.1093/rheumatology/keh627 Occurrence Handle15855183

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meindert Danhof.

Additional information

This paper is based in part on discussions at a COST B15 expert meeting in Leiden, the Netherlands, on April 27–28, 2000. Participating experts were Gunnar Alvan (Sweden), Svein G. Dahl (Norway), Jochen Kuhlmann (Germany), Gilles Paintaud (France), Lars Farde (Sweden), Mats Karlsson (Sweden), Stephen Fey (Denmark), Munir Pirmohamed (UK), Paul Rolan (UK), Matthias Büchler (France), Joop van Gerven (Netherlands), Piet Van der Graaf (UK), Kees Kluft (Netherlands), Nick H.G. Holford (New Zealand), Oscar E. Della Pasqua (Netherlands/UK), Olavi Pelkonen (Finland).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danhof, M., Alvan, G., Dahl, S.G. et al. Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling—A New Classification of Biomarkers. Pharm Res 22, 1432–1437 (2005). https://doi.org/10.1007/s11095-005-5882-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5882-3

Key Words

Navigation