Skip to main content
Log in

Synthesis and Characterization of Silver–Platinum Bimetallic Nanowires and Platinum Nanotubes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A galvanic replacement reaction was used to prepare silver–platinum bimetallic nanowires and platinum nanotubes. Silver nanowires, prepared by boiling aqueous silver nitrate with sodium citrate in the presence of small amount of sodium hydroxide, were used as the sacrificial template in the galvanic reaction to prepare silver–platinum bimetallic nanowires and ultimately hollow platinum nanotubes. The resulting nanomaterials are stable and can be isolated without core aggregation or decomposition. These new materials have been characterized by transmission electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma atomic emission spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Narayanan and M. A. El-Sayed (2003). J. Phys. Chem. B 107, 12416.

    Article  CAS  Google Scholar 

  2. L. M. Falicov and G. A. Somorjai (1985). Proc. Natl. Acad. Sci. U.S.A. 82, 2207.

    Article  CAS  Google Scholar 

  3. M. A. El-Sayed (2001). Acc. Chem. Res. 34, 257.

    Article  CAS  Google Scholar 

  4. A. Hamnett (1997). Catal. Today 38, 445.

    Article  CAS  Google Scholar 

  5. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk (1998). Science 280, 1735.

    Article  CAS  Google Scholar 

  6. A. Roucoux, J. Schulz, and H. Patin (2002). Chem. Rev. 102, 3757.

    Article  CAS  Google Scholar 

  7. K. R. Williams and G. T. Burstein (1997). Catal. Today 38, 401.

    Article  CAS  Google Scholar 

  8. A. T. Bell (2003). Science 299, 1688.

    Article  CAS  Google Scholar 

  9. C. W. Chen and M. Akashi (1997). Langmuir 13, 6465.

    Article  CAS  Google Scholar 

  10. H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, and C. L. Bai (2004). Angew. Chem. Int. Ed. 43, 1540.

    Article  CAS  Google Scholar 

  11. K. S. Chou and K. C. Huang (2001). J. Nanoparticle Res. 3, 127.

    Article  CAS  Google Scholar 

  12. D. Farrell, S. A. Majetich, and J. P. Wilcoxon (2003). J. Phys. Chem. B 107, 11022.

    Article  CAS  Google Scholar 

  13. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989.

    Article  CAS  Google Scholar 

  14. R. Narayanan and M. A. El-Sayed (2004). Nano Lett. 4, 1343.

    Article  CAS  Google Scholar 

  15. R. Narayanan and M. A. El-Sayed (2005). J. Phys. Chem. B 109, 12663.

    Article  CAS  Google Scholar 

  16. H. Wakayama, N. Setoyama, and Y. Fukushima (2003). Adv. Mater. 15, 742.

    Article  CAS  Google Scholar 

  17. H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. D. Yang, and G. A. Somorjai (2006). J. Am. Chem. Soc. 128, 3027.

    Article  CAS  Google Scholar 

  18. G. A. Somorjai and M. C. Yang (2003). Topics Catal. 24, 61.

    Article  CAS  Google Scholar 

  19. J. Li, Y. Liang, Q. C. Xu, X. Z. Fu, J. Q. Xu, and J. D. Lin (2006). J. Nanosci. Nanotechnol. 6, 1107.

    Article  CAS  Google Scholar 

  20. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, and Y. Maeda (2000). J. Phys. Chem. B 104, 6028.

    Article  CAS  Google Scholar 

  21. G. Schmid, H. West, H. Mehles, and A. Lehnert (1997). Inorg. Chem. 36, 891.

    Article  CAS  Google Scholar 

  22. K. R. Harikumar, S. Ghosh, and C. N. R. Rao (1997). J. Phys. Chem. A 101, 536.

    Article  CAS  Google Scholar 

  23. M. Michaelis, A. Henglein, and P. Mulvaney (1994). J. Phys. Chem. 98, 6212.

    Article  CAS  Google Scholar 

  24. P. Mulvaney, M. Giersig, and A. Henglein (1993). J. Phys. Chem. 97, 7061.

    Article  CAS  Google Scholar 

  25. A. Henglein (2000). J. Phys. Chem. B 104, 2201.

    Article  CAS  Google Scholar 

  26. L. Y. Cao, L. M. Tong, P. Diao, T. Zhu, and Z. F. Liu (2004). Chem. Mater. 16, 3239.

    Article  CAS  Google Scholar 

  27. C. Damle, K. Biswat, and M. Sastry (2001). Langmuir 17, 7156.

    Article  CAS  Google Scholar 

  28. J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, and R. R. Adzic (2005). J. Phys. Chem. B 109, 22701.

    Article  CAS  Google Scholar 

  29. N. Toshima, M. Kanemaru, Y. Shiraishi, and Y. Koga (2005). J. Phys. Chem. B 109, 16326.

    Article  CAS  Google Scholar 

  30. N. S. Marinkovic, J. X. Wang, J. S. Marinkovic, and R. R. Adzic (1999). J. Phys. Chem. B 103, 139.

    Article  CAS  Google Scholar 

  31. W. X. Huang, X. H. Bao, H. H. Rotermund, and G. Ertl (2002). J. Phys. Chem. B 106, 5645.

    Article  CAS  Google Scholar 

  32. K. K. Caswell, C. M. Bender, and C. J. Murphy (2003). Nano Lett. 3, 667.

    Article  CAS  Google Scholar 

  33. R. M. Crooks, M. Q. Zhao, L. Sun, V. Chechik, and L. K. Yeung (2001). Acc. Chem. Res. 34, 181.

    Article  CAS  Google Scholar 

  34. M. Q. Zhao and R. M. Crooks (1999). Chem. Mater. 11, 3379.

    Article  CAS  Google Scholar 

  35. I. Moriguchi, K. Matsuo, M. Sakai, K. Hanai, Y. Teraoka, and S. Kagawa (1998). J. Chem. Soc. Faraday Trans. 94, 2199.

    Article  CAS  Google Scholar 

  36. J. I. Park and J. Cheon (2001). J. Am. Chem. Soc. 123, 5743.

    Article  CAS  Google Scholar 

  37. S. E. Hunyadi and C. J. Murphy (2006). J. Mater. Chem. 16, 3929.

    Article  CAS  Google Scholar 

  38. R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca (2005). Langmuir 21, 10504.

    Article  CAS  Google Scholar 

  39. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia (2002). Nano Lett. 2, 165.

    Article  CAS  Google Scholar 

  40. Y. G. Sun, B. T. Mayers, and Y. N. Xia (2002). Nano Lett. 2, 481.

    Article  CAS  Google Scholar 

  41. Y. G. Sun and Y. N. Xia (2003). Nano Lett. 3, 1569.

    Article  CAS  Google Scholar 

  42. Y. G. Sun and Y. N. Xia (2002). Science 298, 2176.

    Article  CAS  Google Scholar 

  43. A. J. Bard, R. Parsons, and J. Jordan Standard Potentials in Aqueous Solutions (Marcel Deker, New York, 1985).

    Google Scholar 

  44. R. N. Goldberg and L. G. Hepler (1968). Chem. Rev. 68, 229.

    Article  CAS  Google Scholar 

  45. G. W. Zlawinski and F. P. Zamborini (2007). Langmuir 23, 10357.

    Article  Google Scholar 

  46. M. Z. Liu and P. Guyot-Sionnest (2005). J. Phys. Chem. B 109, 22192.

    Article  CAS  Google Scholar 

  47. C. J. Orendorff and C. J. Murphy (2006). J. Phys. Chem. B 110, 3990.

    Article  CAS  Google Scholar 

  48. J. Y. Chen, T. Herricks, and Y. N. Xia (2005). Angew. Chem. Int. Ed. 44, 2589.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunyadi, S.E., Murphy, C.J. Synthesis and Characterization of Silver–Platinum Bimetallic Nanowires and Platinum Nanotubes. J Clust Sci 20, 319–330 (2009). https://doi.org/10.1007/s10876-009-0242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-009-0242-9

Keywords

Navigation