Skip to main content
Log in

Anharmonic Vibrational Motions In C60: A Potential Energy Surface Derived From Vibrational Self-Consistent Field Calculations

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A potential energy surface (PES) is developed for C60 designed to describe vibrational motions valid in the anharmonic limit. The PES is based on a previously existing one that is fit to the harmonic fundamentals and is then modified to generate anharmonicity of all orders and in all terms, but without additional fitted parameters. The resulting Cartesian vibrational motions are decomposed into normal modes, and the anharmonic expansion coefficients are calculated including 2-mode couplings and up to 4th order. The resulting PES is used in a vibrational self-consistent field (VSCF) algorithm to calculate the anharmonically corrected fundamental frequencies. The parameters are then fit to fundamental infrared and Raman frequencies. While it is not possible to assign combination and overtone transitions with sufficient experimental accuracy, conclusions about the effects of anharmonic vibrational coupling in C60 are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus G. Dresselhaus P. C. Eklund Science of Fullerenes and Carbon Nanotubes Academic Press New York, pp. 329–413.

  2. D. E. Weeks (1992) J. Chem. Phys. 96 7380

    Google Scholar 

  3. B. Chase N. Herron E. Holler (1992) J. Phys. Chem. 96 4262

    Google Scholar 

  4. G. Dresselhaus M. S. Dresselhaus P. C. Eklund (1992) Phys. Rev. B45 6923

    Google Scholar 

  5. K. A. Wang A. M. Rao P. C. Eklund M. S. Dresselhaus G. Dresselhaus (1993) Phys. Rev. B48 11375

    Google Scholar 

  6. Z. H. Dong P. Zhou J. M. Holden P. C. Eklund M. S. Dresselhaus G. Dresselhaus (1993) Phys. Rev. B48 2862

    Google Scholar 

  7. M.C. Martin X. Du J. Kwon L. Mihaly (1994) Phys. Rev. B50 173

    Google Scholar 

  8. M. C. Martin J. Fabian J. Godard P. Bernier J. M. Lambert L. Mihaly (1995) Phys. Rev. B51 2844

    Google Scholar 

  9. I. Holleman M.G.H. Boogaarts P.J.M. Bentum Particlevan G. Meijer H. Kuzmany J. Fink M. Mehring S. Roth (Eds) (1995) Physics and Chemistry of Fullerenes and Derivatives World Scientific Singapore 55

    Google Scholar 

  10. J. Fabian (1996) Phys. Rev. B53 13864

    Google Scholar 

  11. D. A. Jelski R. H. Haley J. M. Bowman (1996) J. Comp. Chem. 17 1645

    Google Scholar 

  12. C. H. Choi M. Kertesz L. Mihaly (2000) J. Phys. Chem. A104 102

    Google Scholar 

  13. V Schettino M Pagliai L Ciabini G Cardini (2001) J. Phys. Chem. A 105 11192

    Google Scholar 

  14. V Schettino PR Salvi R Bini G Cardini (1994) J. Chem. Phys. 101 11079

    Google Scholar 

  15. L. Nemes D.A. Jelski J. Demaison K. Sarka E.A. Cohen (Eds) (2001) Spectroscopy from Space NATO Science Series II Mathematics, Physics and Chemistry - vol. 20 Kluwer Academic Publ. London 302–316

    Google Scholar 

  16. J. M. Bowman (1986) Acc. Chem. Res. 19 202

    Google Scholar 

  17. H Romanowski JM Bowman LB Harding (1985) J. Chem. Phys. 82 4155

    Google Scholar 

  18. R. A. Jishi R. M. Mirie M. S. Dresselhaus (1992) Phys. Rev. B 45 13685 Occurrence Handle10.1103/PhysRevB.45.13685

    Article  Google Scholar 

  19. J. L. Feldman J. Q. Broughton L. L. Boyer D. E. Reich M. D. Kluge (1992) Phys. Rev. B 46 12731

    Google Scholar 

  20. J. L. Feldman J. Q. Broughton L. L. Boyer D. E. Reich M. D. Kluge (1993) Phys. Rev. B 47 10058

    Google Scholar 

  21. G. Simons, R. G. Parr, J. M. Finlan (1973). J. Chem. Phys., 59 3229; G. Simons, R.G. Parr, J.M. Finlan (1974). J. Chem. Phys., 61 369.

  22. J. C. R. Faulhaber D. Y. K. Ko P. R. Briddon (1993) Phys. Rev. B48 661

    Google Scholar 

  23. N. Koga K. Morokuma (1992) Chem. Phys. Lett. 196 191

    Google Scholar 

  24. R. D. Bendale J. F. Stanton M. C. Zerner (1992) Chem. Phys. Lett. 194 467

    Google Scholar 

  25. A. Ceulemans P.W. Fowler (1990) J. Chem. Phys. 93 1221

    Google Scholar 

  26. P. R. Bunker P. Jensen (1998) Molecular Symmetry and Spectroscopy NRC Research Press Ottawa

    Google Scholar 

  27. R. Pearman M. Gruebele (1998) J. Chem. Phys 108 6561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelski, D.A., Nemes, L.S. & Broughton, A. Anharmonic Vibrational Motions In C60: A Potential Energy Surface Derived From Vibrational Self-Consistent Field Calculations. J Clust Sci 16, 1–21 (2005). https://doi.org/10.1007/s10876-005-2712-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-005-2712-z

Key words:

Navigation