Skip to main content
Log in

Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective 15N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with 15NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective 15N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of 15N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bertini I, Luchinat C (1999) New applications of paramagnetic NMR in chemical biology. Curr Opin Chem Biol 3:145–151

    Article  Google Scholar 

  • Bertini I, Felli IC, Luchinat C (2000) Lanthanide induced residual dipolar couplings for the conformational investigation of peripheral 15NH2 moieties. J Biomol NMR 18:347–355

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286

    Article  Google Scholar 

  • Boehlein SK, Richards NGJ, Schuster SM (1994) Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. J Biol Chem 269:7450–7457

    Google Scholar 

  • Buck M, Schwalbe H, Dobson CM (1995) Structural determinants of protein dynamics: analysis of 15 N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34:4041–4055

    Article  Google Scholar 

  • Cai M, Huang Y, Clore GM (2001) Accurate orientation of the functional groups of asparagine and glutamine side chains using one- and two-bond dipolar couplings. J Am Chem Soc 123:8642–8643

    Article  Google Scholar 

  • Cedar H, Schwartz JH (1969) The asparagine synthetase of Escherichia coli I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J Biol Chem 244:4112–4121

    Google Scholar 

  • Clore GM (2011) Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Sci 20:229–246

    Article  Google Scholar 

  • Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616

    Article  Google Scholar 

  • Creighton TE (1993) Proteins: structure and molecular properties, 2nd edn. Freeman, New York

    Google Scholar 

  • Edwards KJ, Ollis DL, Dixon NE (1997) Crystal structure of cytoplasmic Escherichia coli peptidyl-prolyl isomerase: evidence for decreased mobility of loops upon Complexation. J Mol Biol 271:258–265

    Article  Google Scholar 

  • Etezady-Esfarjani T, Hiller S, Villalba C, Wüthrich K (2007) Cell-free synthesis of perdeuterated proteins for NMR studies. J Biomol NMR 39:229–238

    Article  Google Scholar 

  • Farmer BT, Venters RA (1996) Assignment of aliphatic side-chain 1HN/15N resonances in perdeuterated proteins. J Biomol NMR 7:59–71

    Google Scholar 

  • Goddard TD, Kneller DG (2008) Sparky 3. University of California, San Francisco

    Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Higman VA, Boyd J, Smith LJ, Redfield C (2004) Asparagine and glutamine side chain conformation in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings. J Biomol NMR 30:327–346

    Article  Google Scholar 

  • Huang XY, Holden HM, Raushel FM (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 70:149–180

    Article  Google Scholar 

  • Huang F, Pei YY, Zuo HH, Chen JL, Yang Y, Su XC (2013) Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag. Chem Eur J 19:17141–17149

    Article  Google Scholar 

  • John M, Otting G (2007) Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy. ChemPhysChem 8:2309–2313

    Article  Google Scholar 

  • Kainosho M, Güntert P (2010) SAIL—stereo-array isotope labeling. Q Rev Biophys 42:247–300

    Article  Google Scholar 

  • Kay WW (1971) Two aspartate transport systems in Escherichia coli. J Biol Chem 246:7373–7382

    Google Scholar 

  • Keizers PH, Ubbink M (2011) Paramagnetic tagging for protein structure and dynamics analysis. Prog Nucl Magn Reson Spectrosc 58:88–96

    Article  Google Scholar 

  • Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable-isotope labelling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Google Scholar 

  • Lesk AM (2001) Introduction to protein architecture: the structural biology of proteins. Oxford University Press, Oxford

    Google Scholar 

  • Liu A, Li Y, Yao L, Yan H (2006) Simultaneous NMR assignment of backbone and side chain amides in large proteins with IS-TROSY. J Biomol NMR 36:205–214

    Article  Google Scholar 

  • Liu A, Yao L, Li Y, Yan H (2007) TROSY of side chain amides in large proteins. J Magn Reson 186:319–326

    Article  ADS  Google Scholar 

  • Liu A, Lu Z, Wang J, Yao L, Li Y, Yan H (2008a) NMR detection of bifurcated hydrogen bonds in large proteins. J Am Chem Soc 130:2428–2429

    Article  Google Scholar 

  • Liu A, Wang J, Lu Z, Yao L, Li Y, Yan H (2008b) Hydrogen-bond detection, configuration assignment and rotamer correction of side chain amides in large proteins by NMR spectroscopy through protium/deuterium isotope effects. ChemBioChem 9:2860–2871

    Article  Google Scholar 

  • Löhr F, Rüterjans H (1997) H2NCO-E.COSY, a simple method for the sterospecific assignment of side-chain amide protons in proteins. J Magn Reson 124:255–258

    Article  ADS  Google Scholar 

  • Loscha KV, Otting G (2013) Biosynthetically directed 2H labelling for stereospecific resonance assignments of glycine methylene groups. J Biomol NMR 55:97–104

    Article  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear-magnetic resonance spectra of proteins. Quart Rev Biophys 23:1–38

    Article  Google Scholar 

  • McIntosh LP, Brun E, Kay LE (1997) Stereospecific assignment of the NH2 resonances from the primary amides of asparagine and glutamine side chains in isotopically labeled proteins. J Biomol NMR 9:306–312

    Article  Google Scholar 

  • Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE (2002) Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc 124:1443–1451

    Article  Google Scholar 

  • Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  Google Scholar 

  • Pervushin K, Wider G, Wüthrich K (1997) Deuterium relaxation in a uniformly 15N-labeled homeodomain and its DNA complex. J Am Chem Soc 119:3842–3843

    Article  Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212

    Article  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting & #x0394;χ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Shi J, Pelton JG, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247

    Article  MATH  Google Scholar 

  • Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  Google Scholar 

  • Stadtman ER (2001) The story of glutamine synthetase regulation. J Biol Chem 276:44357–44364

    Article  Google Scholar 

  • Staunton D, Schlinker R, Zanetti G, Colebrook SA, Campbell ID (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn Reson Chem 44:S2–S9

    Article  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  Google Scholar 

  • Su XC, Loh CT, Qi R, Otting G (2011) Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O. J Biomol NMR 50:35–42

    Article  Google Scholar 

  • Sunnerhagen M, Nilges M, Otting G, Carey J (1997) Solution structure of the DNA-binding domain and model for the complex of multifunctional hexameric arginine repressor with DNA. Nat Struct Biol 4:819–826

    Article  Google Scholar 

  • Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2011) Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups. J Am Chem Soc 133:17420–17427

    Article  Google Scholar 

  • Takeuchi K, Frueh DP, Sun ZY, Hiller S, Wagner G (2010) CACA-TOCSY with alternate 13C-12C labeling: a 13Cα direct detection experiment for main chain resonance assignment, dihedral angle information, and amino acid type identification. J Biomol NMR 47:55–63

    Article  Google Scholar 

  • Tate S, Tate NU, Ravera MW, Jaye M, Inagaki F (1992) A novel 15N-labeling method to selectively observe 15NH2 resonances of proteins in 1H-detected heteronuclear correlation spectroscopy. FEBS Lett 297:39–342

    Article  Google Scholar 

  • Tong KI, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67

    Article  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  Google Scholar 

  • Vance CK, Kang YM, Miller AF (1997) Selective 15N labeling and direct observation by NMR of the active-site glutamine of Fe-containing superoxide dismutase. J Biomol NMR 9:201–206

    Article  Google Scholar 

  • Waugh DS (1996) Genetic tools for selective labeling of proteins with α-15N-amino acids. J Biomol NMR 8:184–192

    Google Scholar 

  • Whittaker JW (2007) Selective isotopic labeling of recombinant proteins using amino acid auxotroph strains. Methods Mol Biol 389:175–187

    Article  Google Scholar 

  • Willis RC, Woolfolk CA (1974) Asparagine utilization in Escherichia coli. J Bacteriol 118:231–241

    Google Scholar 

  • Willis RC, Woolfolk CA (1975) l-asparagine uptake in Escherichia coli. J Bacteriol 123:937–945

    Google Scholar 

  • Woolfolk CA, Shapiro B, Stadtman ER (1966) Regulation of glutamine synthetase: I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys 116:177–192

    Article  Google Scholar 

  • Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li XD (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci 49:17090–17095

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support by the 973 program (2013CB910200), the National Science Foundation of China (21073101, 21121002 and 21273121), and the Australian Research Council is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Cheng Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Chen, JL., Yang, Y. et al. Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. J Biomol NMR 59, 251–261 (2014). https://doi.org/10.1007/s10858-014-9844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9844-0

Keywords

Navigation