Skip to main content
Log in

Cell-free protein synthesis of perdeuterated proteins for NMR studies

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Cell-free protein synthesis protocols for uniformly deuterated proteins typically yield low, non-uniform deuteration levels. This paper introduces an E. coli cell-extract, D-S30, which enables efficient production of proteins with high deuteration levels for all non-labile hydrogen atom positions. Potential applications of the new protocol may include production of proteins with selective isotope-labeling of selected amino acid residues on a perdeuterated background for studies of enzyme active sites or for ligand screening in drug discovery projects, as well as the synthesis of perdeuterated polypeptides for NMR spectroscopy with large supra-molecular structures. As an illustration, it is demonstrated that the 800-kDa chaperonine GroEL synthesized with the D-S30 cell-free system had a uniform deuteration level of about 95% and assembled into its biologically active oligomeric form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CECF:

continuous-exchange cell-free

FKBP:

FK506-binding protein

MS:

mass spectrometry

MWCO:

molecular weight cut-off

RNAP:

RNA polymerase.

References

  • Adrain C, Duriez PJ, Brumatti G, Delivani P, Martin SJ (2006) The cytotoxic lymphocyte protease, granzyme B, targets the cytoskeleton and perturbs microtubule polymerization dynamics. J Biol Chem 281:8118–8125

    Article  Google Scholar 

  • Bartels C., Güntert P., Wüthrich K. (1995) IFLAT–A new automatic baseline-correction method for multidimensional NMR spectra with strong solvent signals J Magn Reson A 117:330–333

    Article  Google Scholar 

  • De Marco A, Wüthrich K (1976) Digital filtering with a sinusoidal window function: an alternative technique for resolution enhancement in FT NMR. J Magn Reson 24:201–204

    Google Scholar 

  • Ezure T, Suzuki T, Higashide S, Shintani E, Endo K, Kobayashi S, Shikata M, Ito M, Tanimizu K, Nishimura O (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol Prog 22:1570–1577

    Article  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418:207–211

    Article  ADS  Google Scholar 

  • Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multi-dimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629

    Article  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • Katzen F, Kudlicki W (2006) Efficient generation of insect-based cell-free translation extracts active in glycosylation and signal sequence processing. J Biotechnol 125:194–197

    Article  Google Scholar 

  • Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  Google Scholar 

  • Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68

    Article  Google Scholar 

  • Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    Article  Google Scholar 

  • LeMaster DM (1989) Deuteration in protein proton magnetic resonance. Methods Enzymol 177:23–43

    Article  Google Scholar 

  • Mikami S, Kobayashi T, Yokoyama S, Imataka H (2006) A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J Biotechnol 127:65–78

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  Google Scholar 

  • Pachter R, Arrowsmith CH, Jardetzky O (1992) The effect of selective deuteration on magnetization transfer in larger proteins. J Biomol NMR 2:183–194

    Article  Google Scholar 

  • Riek R, Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) Solution NMR techniques for large molecular and supramolecular structures. J Am Chem Soc 124:12144–12153

    Article  Google Scholar 

  • Rosen MK, Michnick SW, Karplus M, Schreiber SL (1991) Proton and nitrogen sequential assignments and secondary structure determination of the human FK506 and rapamycin binding protein. Biochemistry 30:4774–4789

    Article  Google Scholar 

  • Sakurai N, Moriya K, Suzuki T, Sofuku K, Mochiki H, Nishimura O, Utsumi T (2006) Detection of co- and posttranslational protein N-myristoylation by metabolic labeling in an insect cell-free protein synthesis system. Anal Biochem 362:236–244

    Article  Google Scholar 

  • Schaffitzel C, Ban N (2007) Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 159:302–310

    Article  Google Scholar 

  • Sengupta S, Shah M, Nagaraja V (2006) Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding. Nucleic Acids Res 34:5567–5576

    Article  Google Scholar 

  • Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304

    Article  Google Scholar 

  • Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  ADS  Google Scholar 

  • Sugimori N, Torizawa T, Aceti DJ, Thao S, Markley JL, Kainosho M (2004) 1H, 13C and 15N backbone assignment of a 32 kDa hypothetical protein from Arabidopsis thaliana, At3g16450.1. J Biomol NMR 30:357–358

    Article  Google Scholar 

  • Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol. J Biomol NMR 30:311–325

    Article  Google Scholar 

  • Veiga P, Piquet S, Maisons A, Furlan S, Courtin P, Chapot-Chartier MP, Kulakauskas S (2006) Identification of an essential gene responsible for D-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Mol Microbiol 62:1713–1724

    Article  Google Scholar 

  • Vinarov DA, Lytle BL, Peterson FC, Tyler EM, Volkman BF, Markley JL (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nature Methods 1:1–5

    Article  Google Scholar 

  • Wakiyama M, Kaitsu Y, Yokoyama S (2006) Cell-free translation system from Drosophila S2 cells that recapitulates RNAi. Biochem Biophys Res Commun 343:1067–1071

    Article  Google Scholar 

  • Waugh DS (1996) Genetic tools for selective labeling of proteins with α-15N-amino acids. J Biomol NMR 8:184–192

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids, Wiley, New York, NY

    Google Scholar 

  • Xu RX, Nettesheim D, Olejniczak ET, Meadows R, Gemmecker G, Fesik SW (1993) 1H, 13C, and 15N assignments and secondary structure of the FK506 binding protein when bound to ascomycin. Biopolymers 33:535–550

    Article  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Strauss, Protein Structure Unit of the Novartis Biomedical Research Institute, Basel for providing us with the FKBP expression plasmid. The deuterated amino acid mixture used in this work was a generous gift from Cambridge Isotope Laboratories, Inc. (CIL). Financial support was obtained from the Schweizerischer Nationalfonds and the ETH Zürich through the NCCR Structural Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touraj Etezady-Esfarjani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etezady-Esfarjani, T., Hiller, S., Villalba, C. et al. Cell-free protein synthesis of perdeuterated proteins for NMR studies . J Biomol NMR 39, 229–238 (2007). https://doi.org/10.1007/s10858-007-9188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9188-0

Keywords

Navigation