Skip to main content
Log in

Influence of thermal treatment on the nonlinear current–voltage behavior and restoration hysteresis effect of CaCu3Ti4O12 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 (CCTO) thin films were prepared through sol–gel method. The influences of sintering temperature and rapid thermal process (RTP) in oxygen-rich atmospheres on its nonlinear current–voltage (I–V) behavior and restoration hysteresis effect were investigated. The phase identification of the films was characterized by using X-ray diffractometer, the results show that in the as-sintered films which were treated through RTP in oxygen atmospheres, a weak CuO and TiO2 diffraction peaks could be detected. Field emission scanning electron microscope was performed to observe the microstructure of the films. A semiconductor parameter analyzer was used to determine the I–V behaviors. The results show that with sintering temperature increase, the threshold voltages of CCTO thin films decreased significantly. After the films were treated through RTP in oxygen-rich atmosphere, the height of Schottky barriers would increase obviously, resulting in the increase of threshold voltages of CCTO films, and the longer the time of RTP, the higher the Schottky barrier. The influence of RTP on restoration hysteresis effect of CCTO films was reported for the first time, and RTP could decrease the initial current and increase the resistivity. The double Schottky barrier model and the tunnel junction model were used to explain these phenomena, and the conduction mechanism in CCTO film was discussed to describe the restoration hysteresis effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner et al., J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nature 3, 774 (2004)

    Article  Google Scholar 

  3. P.R. Bueno, J.A. Varela, E. Longo, J. Eur. Ceram. Soc. 28, 505 (2008)

    Article  Google Scholar 

  4. R.K. Sendi, S. Mahmud, Appl. Surf. Sci. 261, 128 (2012)

    Article  Google Scholar 

  5. A.A. Felix, J.L.M. Rupp, J.A. Varela et al., J. Appl. Phys. 112, 054512 (2012)

    Article  Google Scholar 

  6. A.O. Turky, M.M. Rashad, Z.I. Zaki et al., RSC Adv. 24, 18767 (2015)

    Article  Google Scholar 

  7. D.S. Saidina, A. Norshamira, M. Mariatti, J. Mater. Sci. Mater. Electron. 26, 8118 (2015)

    Article  Google Scholar 

  8. L. Mei, H. Hsiang, T. Fang, J. Am. Ceram. Soc. 91, 3735 (2008)

    Article  Google Scholar 

  9. R. Yu, H. Xue, Z. Cao et al., J. Eur. Ceram. Soc. 32, 1245 (2012)

    Article  Google Scholar 

  10. S.Y. Chung, J.H. Choi, J.K. Choi, Appl. Phys. Lett. 91, 091912 (2007)

    Article  Google Scholar 

  11. C. Chen, C. Wang, T.Y. Ninget et al., Solid State Commun. 151, 1336 (2011)

    Article  Google Scholar 

  12. A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)

    Article  Google Scholar 

  13. M. Xiao, K.Y. Wang, X.Q. ChenYang, J. Mater. Sci. Mater. Electron. 25, 2710 (2014)

    Article  Google Scholar 

  14. M. Xiao, Q. Hu, J. Alloys Compd. 652, 70 (2015)

    Article  Google Scholar 

  15. Y. Huang, L.J. Liu, D.P. Shi et al., Ceram. Int. 39, 6063 (2013)

    Article  Google Scholar 

  16. K. Sato, Y. Takada, H. Maekawaet et al., J. Appl. Phys. 19, 909 (1980)

    Article  Google Scholar 

  17. Y.H. Lin, J. Cai, M. Li et al., J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  18. J. Li, M.A. Subramanian, H.D. Rosenfeld et al., Chem. Mater. 16, 5223 (2004)

    Article  Google Scholar 

  19. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129 (2006)

    Article  Google Scholar 

  20. M.A. Ponce, M.A. Ramirez, F. Schipani et al., J. Eur. Ceram. Soc. 35, 153 (2015)

    Article  Google Scholar 

  21. S.C. Ray, Sol. Energy Mater. Sol. Cells 68, 307 (2001)

    Article  Google Scholar 

  22. Z. Yang, Y. Zhang, Z. Lu, J. Am. Ceram. Soc. 96, 806 (2013)

    Article  Google Scholar 

  23. F. Luo, J. He, J. Hu et al., J. Am. Ceram. Soc. 93, 3043 (2010)

    Article  Google Scholar 

  24. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn (Wiley, 2006), pp. 417–459

  25. R.A. Logan, W.M. Augustyniak, J.F. Gilbert, J. Appl. Phys. 32, 1201 (1961)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Hu, Q. Influence of thermal treatment on the nonlinear current–voltage behavior and restoration hysteresis effect of CaCu3Ti4O12 thin films. J Mater Sci: Mater Electron 27, 10816–10821 (2016). https://doi.org/10.1007/s10854-016-5188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5188-8

Keywords

Navigation