Skip to main content
Log in

Effects of temperature and Ti-nonstoichiometry on electric properties of CaCu3Ti4O12 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work the nonlinear current–voltage characteristics of CaCu3Ti4+xO12+2x (X = 0, ±0.1, ±0.2, ±0.3) films prepared by sol–gel method are studied. X-ray diffraction results show that samples are all in good crystalline structures. Second phases existing in Ti non-stoichiometric CCTO films will have influence on the barrier height of interface and the breakdown voltage. Non-linear current–voltage properties are measured by a semiconductor parameter analyzer and show that the variation of Ti content in CCTO films will increase the breakdown voltages under room temperature. The temperature dependence of current–voltage curves and the relationship between voltage and current show the non-stoichiometric films are much sensitive to temperature variation. And the breakdown voltages of CCTO films decrease with the rising temperature. Considering Cu oxide layer may exist at the surface of film and segregates the semiconductor from metal electrode, the metal–insulator–semiconductor structure combined by Au/CCTO/Pt is used to explain the carrier transport mechanism of films under applied voltage. Thermionic emission may be the major factor for carrier transport at the beginning of applied voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Zhao, J. Liu, G. Ma, Ceram. Int. 38, 1221 (2012)

    Article  Google Scholar 

  2. J.Y. Li, T.W. Xu, S.T. Li, H.Y. Jin, W. Li, J. Alloy. Compd. 506, L1 (2010)

    Article  Google Scholar 

  3. R. Parra, R. Savu, L.A. Varela, M.M. Reboredo, M.A. Ramirez, M.S. Castro, J. Alloy. Compd. 183, 1209 (2010)

    Google Scholar 

  4. L. Ramano, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramirez, M.S. Castro, J. Alloy. Compd. 497, 349 (2010)

    Article  Google Scholar 

  5. J. Li, K. Cho, N.J. Wu, A. Ignatiev, IEEE Trans. 11, 534 (2004)

    Google Scholar 

  6. Y.M. Huang, L.J. Liu, D.P. Shi, S.S. Wu, S.Y. Zheng, L. Fang, C.Z. Hu, B. Elouadi, Ceram. Int. 39, 6063 (2013)

    Article  Google Scholar 

  7. W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Solid State Commun. 151, 173 (2011)

    Article  Google Scholar 

  8. S.D. Almeida-Didry, C. Autret, A. Lucas, H. Christophe, P. François, G. François, J. Eur. Ceram. Soc. 34, 3649 (2014)

    Article  Google Scholar 

  9. T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)

    Article  Google Scholar 

  10. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, Appl. Phys. Lett. 88, 172902 (2006)

    Article  Google Scholar 

  11. M.A. Ramirez, A.Z. Simões, A.A. Felix, R. Tararam, E. Longo, J.A. Varela, J. Alloy. Compd. 509, 9930 (2011)

    Article  Google Scholar 

  12. A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)

    Article  Google Scholar 

  13. L.J. Liu, L. Fang, Y.M. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, L. Fang, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)

    Article  Google Scholar 

  14. R. Jiménez, M.L. Calzada, I. Bretos, J.C. Goes, A.S.B. Sombra, J. Eur. Ceram. Soc. 27, 3829 (2007)

    Article  Google Scholar 

  15. G.Z. Zang, J.L. Zhang, P. Zheng, J.F. Wang, C.L. Wang, J. Phys. D Appl. Phys. 38, 1824 (2005)

    Article  Google Scholar 

  16. M. Xiao, Q. Hu, J. Alloy. Compd. 652, 70 (2015)

    Article  Google Scholar 

  17. G.C. Deng, Z. He, P. Muralt, J. Appl. Phys. 105, 084106 (2009)

    Article  Google Scholar 

  18. G.C. Deng, T. Yamada, P. Muralt, Appl. Phys. Lett. 91, 202903 (2007)

    Article  Google Scholar 

  19. C.C. Lin, Y.P. Chang, C.C. Ho, Y.S. Shen, B.S. Chiou, IEEE Trans. Magn. 47, 633 (2011)

    Article  Google Scholar 

  20. Y.H. Lin, J. Cai, M. Li, C.W. Nan, J. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  21. Y. Zhi, X. Rui, Wuhan Univ. J. Nat. Sci. 20, 255 (2015)

    Article  Google Scholar 

  22. T. Li, Z. Chen, Y. Su, L. Su, J. Zhang, J. Mater. Sci. 44, 6149 (2009)

    Article  Google Scholar 

  23. M. Xiao, K.Y. Wang, X.Q. Chenyang, S. Xie, J. Mater. Sci. Mater. Electron. 25, 2710 (2014)

    Article  Google Scholar 

  24. J.J. Mohamed, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Ceram. Process. Res. 12, 496 (2011)

    Google Scholar 

  25. J.J. Bian, K. Yan, H.B. Gao, Mater. Chem. Phys. 96, 349 (2006)

    Article  Google Scholar 

  26. Z.Y. Lu, X.M. Li, J.Q. Wu, J. Am. Ceram. Soc. 95, 476 (2012)

    Article  Google Scholar 

  27. A.A. Felix, J.L.M. Rupp, J.A. Varela, M.O. Orlandi, J. Appl. Phys. 112, 054512 (2012)

    Article  Google Scholar 

  28. S. Kwon, D.P. Cann, J. Mater. Sci. 44, 4117 (2009)

    Article  Google Scholar 

  29. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 2833 (2006)

    Article  Google Scholar 

  30. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Huang, H. Effects of temperature and Ti-nonstoichiometry on electric properties of CaCu3Ti4O12 thin films. J Mater Sci: Mater Electron 27, 12550–12556 (2016). https://doi.org/10.1007/s10854-016-5806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5806-5

Keywords

Navigation