Skip to main content
Log in

Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries

  • Batteries and Supercapacitors
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon-multi-walled carbon nanotubes-carbon (Si-MWNTS-C) microspheres have been fabricated through the ball milling and spray drying method followed by the carbonization process. The as-prepared composite microspheres are confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The specific capacity of the as-prepared microspherical composite as anode in lithium-ion batteries (LIBs) is about 1100 mAh g−1 at the current density of 0.2 A g−1 (based on the total weight of the composite). At the high current density of 6 A g−1, the Si-MWNTS-C microspheres exhibit reversible capacity of 415 mAh g−1. Through the ex situ SEM, we observed that the Si-MWNTS-C microspherical composite particles have no extinct change on the electrode surface except for the growth of the spherical particles after 100 cycles. The excellent electrochemical performance is ascribed to the synergistic effect between Si nanoparticles (Si NPs) and MWNTS-C microspheres. The as-prepared Si-MWNTS-C microspheres can effectively accommodate large volume changes and provide a 3D conductive network during the lithiation–delithiation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  Google Scholar 

  3. Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  Google Scholar 

  4. Li Y, Wu JC, Chopra N (2015) Nano-carbon-based hybrids and heterostructures: progress in growth and application for lithium-ion batteries. J Mater Sci 50:7843–7865. doi:10.1007/s10853-015-9429-7

    Article  Google Scholar 

  5. Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro-meso-microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.1007/s10853-015-9214-7

    Article  Google Scholar 

  6. Etiemble A, Besnard N, Bonnin A, Adrien J, Douillard T, Tran-Van P, Gautier L, Badot JC, Maire E, Lestriez B (2016) Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium-ion batteries. J Mater Sci. doi:10.1007/s10853-016-0374-x

  7. Song YC, Soh AK, Zhang JQ (2016) On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size. J Mater Sci 51:9902–9911. doi:10.1007/s10853-016-0223-y

    Article  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  9. Szczech JR, Jin S (2011) nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  Google Scholar 

  10. Chen Y, Nie M, Lucht BL, Saha A, Guduru PR, Bose A (2014) High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. ACS Appl Mater Interfaces 6:4678–4683

    Article  Google Scholar 

  11. Yang Y, Cheng DQ, Liu B, Zhao JB (2015) Binder-free Si nanoparticle electrode with 3-D porous structure prepared by electrophoretic deposition for lithium-ion batteries. ACS Appl Mater Interfaces 7:7497–7504

    Article  Google Scholar 

  12. Yu J, Yang J, Feng X, Jia H, Wang J, Lu W (2014) Uniform carbon coating on silicon nanoparticles by dynamic cvd process for electrochemical lithium storage. Ind Eng Chem Res 53:12697–12704

    Article  Google Scholar 

  13. Vrankovic D, Reinold LM, Riedel R, Graczyk-Zajac M (2016) Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. J Mater Sci 51:6051–6061

    Article  Google Scholar 

  14. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93

    Article  Google Scholar 

  15. Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    Article  Google Scholar 

  16. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103

    Article  Google Scholar 

  17. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838

    Article  Google Scholar 

  18. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531

    Article  Google Scholar 

  19. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    Article  Google Scholar 

  20. Jeong HM, Lee SY, Shin WH, Kwon JH, Shakoor A, Hwang TH, Kim SY, Kong BS, Seo JS, Lee YM, Kang JK, Choi JW (2012) Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes. RSC Adv. 2:4311–4317

    Article  Google Scholar 

  21. McDowell MT, Lee SW, Ryu I, Wu H, Nix WD, Choi JW, Cui Y (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11:4018–4025

    Article  Google Scholar 

  22. Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl Mater Interfaces 4:2824–2828

    Article  Google Scholar 

  23. Iwamura S, Nishihara H, Kyotani T (2012) Effect of buffer size around nanosilicon anode particles for lithium-ion batteries. J Phys Chem C 116:6004–6011

    Article  Google Scholar 

  24. Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) Fabrication of Si Core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. J Power Sources 206:267–273

    Article  Google Scholar 

  25. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  Google Scholar 

  26. Sun W, Hu RZ, Liu H, Zeng MQ, Yang LC, Wang HH, Zhu M (2014) Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J Power Sources 268:610–618

    Article  Google Scholar 

  27. Shao D, Tang DP, Yang JW, Li YW, Zhang LZ (2015) Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J Power Sources 297:344–350

    Article  Google Scholar 

  28. Cui LF, Hu L, Wu H, Choi JW, Cui Y (2011) Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J Electrochem Soc 158:A592

    Article  Google Scholar 

  29. Hong I, Scrosati B, Croce F (2013) Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process. Solid State Ionics 232:24–28

    Article  Google Scholar 

  30. Feng X, Yang J, Lu Q, Wang J, Nuli Y (2013) Facile approach to SiO(x)/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys Chem Chem Phys 15:14420–14426

    Article  Google Scholar 

  31. Xu Y, Zhu Y, Wang C (2014) Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J Mater Chem A 2:9751

    Article  Google Scholar 

  32. Epur R, Datta MK, Kumta PN (2012) Nanoscale engineered electrochemically active silicon-CNT heterostructures-novel anodes for Li-ion application. Electrochim Acta 85:680–684

    Article  Google Scholar 

  33. Deng J, Ji H, Yan C, Zhang J, Si W, Baunack S, Oswald S, Mei Y, Schmidt OG (2013) Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew Chem 52:2326–2330

    Article  Google Scholar 

  34. Fang S, Shen G, Xu G, Nie P, Wang J, Dou H, Zhang X (2013) Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. Acs Appl Mater Interfaces 6:6497–6503

    Article  Google Scholar 

  35. Ren Y, Wei H, Yang B, Wang J, Ding J (2014) “Double-Sandwich-Like”CuS@reduced graphene oxide as an anode in lithium ion batteries with enhanced electrochemical performance. Electrochim Acta 145:193–200

    Article  Google Scholar 

  36. Pan Q, Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv 3:3899

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National High Technology Research and Development Program of China (Grant 2012AA110204), National Natural Science Foundation of China (Grant 21321062), and Key Project of Science and Technology of Fujian Province (Grant 2013H6022). The authors also wish to express their thanks to Prof. D. W. Liao for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbao Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2016_503_MOESM1_ESM.docx

Calcination conditions of composite materials, SEM images of raw materials, SEM and TEM images and element mapping of the Si-MWNTS-C microspheres fabricated by spray drying, XRD pattern of Si-MWNTS-C composites. Cycling performance of the Si-MWNTS-C microsphere fabricated by spray drying. Supplementary material 1 (DOCX 3005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, K., Ji, P. et al. Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. J Mater Sci 52, 3630–3641 (2017). https://doi.org/10.1007/s10853-016-0503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0503-6

Keywords

Navigation