Skip to main content
Log in

Microstructure Design of Carbon-Coated Nb2O5–Si Composites as Reversible Li Storage Materials

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report on a rationally designed microsphere composite consisting of Nb2O5 and Si nanoparticles for application to secondary Li batteries as an anode material. The micron-sized spherical Nb2O5–Si composite was first prepared using a solvothermal method with appropriate surfactants. Heat treatment was performed to achieve both crystallization of Nb2O5 and pyrolysis of the carbon precursor, yielding a carbon-coated Nb2O5–Si microsphere composite. To characterize the synthesized material, X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy were employed. The electrochemical test results demonstrated that the composite electrode delivered a high capacity of approximately 900 mAh g−1 after 100 cycles. This improved cycling stability can be attributed to the microstructure. In the microsphere composite, Si nanoparticles play a role as the main active material for Li storage; however, they suffer large volume changes during Li insertion and extraction cycling. In our composite material, crystallized orthorhombic Nb2O5 buffers the volume change and facilitates rapid Li transport through its microspheres. Additionally, the carbon coating layer acts as a secondary buffering medium and propels fast electronic/ionic transport.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woo, H., Kang, J., Kim, J., Kim, C., Nam, S., Park, B.: Development of carbon-based cathodes for Li-air batteries: present and future. Electron. Mater. Lett. 12, 551 (2016)

    Article  CAS  Google Scholar 

  2. Jeon, J., Jeong, J.W., Jung, Y.S.: Titanium(III) sulfide nanoparticles coated with multicomponent oxide (Ti–S–O) as a conductive polysulfide scavenger for lithium–sulfur batteries. Electron. Mater. Lett. 15, 613 (2019)

    Article  CAS  Google Scholar 

  3. Winter, M., Besenhard, J.O., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998)

    Article  CAS  Google Scholar 

  4. Park, C.-M., Kim, J.-H., Kim, H., Sohn, H.-J.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010)

    Article  CAS  Google Scholar 

  5. Kim, K., Kim, M.-S., Choi, H., Min, K.-S., Kim, K.-D., Kim, J.-H.: Si–SiOx–Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries. Electron. Mater. Lett. 13, 152 (2017)

    Article  CAS  Google Scholar 

  6. Ma, D., Cao, Z., Hu, A.: Si-based anode materials for Li-ion batteries: a mini review. Nano Micro Lett. 6, 347 (2014)

    Article  CAS  Google Scholar 

  7. Ma, H., Cheng, F., Chen, J.-Y., Zhao, J.-Z., Li, C.-S., Tao, Z.-L., Liang, J.: Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 19, 4067 (2007)

    Article  CAS  Google Scholar 

  8. Shin, H.-C., Corno, J.A., Gole, J.L., Liu, M.: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314 (2005)

    Article  CAS  Google Scholar 

  9. Kim, H., Cho, J.: Superior lithium electroactive mesoporous Si@carbon core − shell nanowires for lithium battery anode material. Nano Lett. 8, 3688 (2008)

    Article  CAS  Google Scholar 

  10. Cui, L.-F., Yang, Y., Hsu, C.-M., Cui, Y.: Carbon − silicon core − shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370 (2009)

    Article  CAS  Google Scholar 

  11. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)

    Article  CAS  Google Scholar 

  12. Park, M.-H., Kim, M.G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y., Cho, J.: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009)

    Article  CAS  Google Scholar 

  13. Li, Y., Wang, R., Zhang, J., Chen, J., Du, C., Sun, T., Liu, J., Gong, C., Guo, J., Yu, L.: Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries. Ceram. Int. 45, 16195 (2019)

    Article  CAS  Google Scholar 

  14. Wen, Z.S., Yang, J., Wang, B.F., Wang, K., Liu, Y.: High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun. 5, 165 (2003)

    Article  CAS  Google Scholar 

  15. Zuo, P., Yin, G., Ma, Y.: Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochim. Acta 52, 4878 (2007)

    Article  CAS  Google Scholar 

  16. Zuo, P., Wang, Z., Yin, G., Jia, D., Cheng, X., Du, C., Shi, P.: Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries. J. Mater. Sci. 43, 3149 (2008)

    Article  CAS  Google Scholar 

  17. Yu, B.-C., Hwa, Y., Kim, J.-H., Sohn, H.-J.: Carbon coating for Si nanomaterials as high-capacity lithium battery electrodes. Electrochem. Commun. 46, 144 (2014)

    Article  CAS  Google Scholar 

  18. Wang, G.X., Sun, L., Bradhurst, D.H., Zhong, S., Dou, S.X., Liu, H.K.: Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sour 88, 278 (2000)

    Article  CAS  Google Scholar 

  19. Kim, I., Kumta, P., Blomgren, G.: Si/TiN nanocomposites novel anode materials for Li-ion batteries. Electrochem. Solid-State Lett. 3, 493 (2000)

    Article  CAS  Google Scholar 

  20. Kim, I., Blomgren, G., Kumta, P.: Nanostructured Si/TiB2 composite anodes for Li-ion batteries. Electrochem. Solid State Lett. 6, A157 (2003)

    Article  CAS  Google Scholar 

  21. Jeong, G., Kim, J.-G., Park, M.-S., Seo, M., Hwang, S.M., Kim, Y.-U., Kim, Y.-J., Kim, J.H., Dou, S.X.: Core–shell structured silicon nanoparticles@TiO2–x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8, 2977 (2014)

    Article  CAS  Google Scholar 

  22. Yang, J., Wang, Y., Li, W., Wang, L., Fan, Y., Jiang, W., Luo, W., Wang, Y., Kong, B., Selomulya, C., Liu, H.K., Dou, S.X., Zhao, D.: Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 29, 1700523 (2017)

    Article  CAS  Google Scholar 

  23. Kim, M.-S., Kim, K., Cha, P.-R., Kang, H.-K., Woo, S.-G., Kim, J.-H.: Nano Si embedded SiOx–Nb2O5–C composite as reversible lithium storage materials. J. Alloys Compd. 699, 351 (2017)

    Article  CAS  Google Scholar 

  24. Kim, K., Kim, J.-H.: Bottom-up self-assembly of nano-netting cluster microspheres as high-performance lithium storage materials. J. Mater. Chem. A 6, 13321 (2018)

    Article  CAS  Google Scholar 

  25. Wang, X., Li, G., Chen, Z., Augustyn, V., Ma, X., Wang, G., Dunn, B., Lu, Y.: High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 1, 1089 (2011)

    Article  CAS  Google Scholar 

  26. Kim, K., Kim, M.-S., Cha, P.-R., Kang, S.H., Kim, J.-H.: Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment. Chem. Mater. 28, 1453 (2016)

    Article  CAS  Google Scholar 

  27. Kim, K., Hwang, J., Seo, H., Kim, H.-S., Kim, J.-H.: Surface-controlled Nb2O5 nanoparticle networks for fast Li transport and storage. J. Mater. Sci. 54, 2493 (2019)

    Article  CAS  Google Scholar 

  28. Rani, R.A., Zoolfakar, A.S., O’Mullane, A.P., Austin, M.W., Kalantar-Zadeh, K.: Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014)

    Article  CAS  Google Scholar 

  29. Nico, C., Monteiro, T., Graça, M.P.F.: Niobium oxides and niobates physical properties: review and prospects. Prog. Mater Sci. 80, 1 (2016)

    Article  CAS  Google Scholar 

  30. Kim, K., Woo, S.-G., Jo, Y.N., Lee, J., Kim, J.-H.: Niobium oxide nanoparticle core–amorphous carbon shell structure for fast reversible lithium storage. Electrochim. Acta 240, 316 (2017)

    Article  CAS  Google Scholar 

  31. Kim, J.W., Augustyn, V., Dunn, B.: The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2, 141 (2012)

    Article  CAS  Google Scholar 

  32. Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P.-L., Tolbert, S.H., Abruña, H.D., Simon, P., Dunn, B.: High-rate electrochemical energy storage through Li intercalation pseudocapacitance. Nat. Mater. 12, 518 (2013)

    Article  CAS  Google Scholar 

  33. Viet, A.L., Reddy, M.V., Jose, R., Chowdari, B.V.R., Ramakrishna, S.: Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 114, 664 (2009)

    Article  CAS  Google Scholar 

  34. Richter, H., Wang, Z.P., Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981)

    Article  CAS  Google Scholar 

  35. Li, B., Yu, D., Zhang, S.-L.: Raman spectral study of silicon nanowires. Phys. Rev. B. 59, 1645 (1999)

    Article  CAS  Google Scholar 

  36. Jehng, J.M., Wachs, I.E.: Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 3, 100 (1991)

    Article  CAS  Google Scholar 

  37. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)

    Article  CAS  Google Scholar 

  38. Himpsel, F., McFeely, F., Taleb-Ibrahimi, A., Yarmoff, J., Hollinger, G.: Microscopic structure of the SiO2/Si interface. Phys. Rev. B 38, 6084 (1988)

    Article  CAS  Google Scholar 

  39. Hohl, A., Wieder, T., Van Aken, P., Weirich, T., Denninger, G., Vidal, M., Oswald, S., Deneke, C., Mayer, J., Fuess, H.: An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non Cryst. Solids 320, 255 (2003)

    Article  CAS  Google Scholar 

  40. Park, C.-M., Choi, W., Hwa, Y., Kim, J.-H., Jeong, G., Sohn, H.-J.: Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 20, 4854 (2010)

    Article  CAS  Google Scholar 

  41. Bahl, M.: ESCA studies of some niobium compounds. J. Phys. Chem. Solids 36, 485 (1975)

    Article  CAS  Google Scholar 

  42. Weibin, Z., Weidong, W., Xueming, W., Xinlu, C., Dawei, Y., Changle, S., Liping, P., Yuying, W., Li, B.: The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods. Surf. Interface Anal. 45, 1206 (2013)

    Article  CAS  Google Scholar 

  43. Wong, F.J., Hong, N., Ramanathan, S.: Orbital splitting and optical conductivity of the insulating state of NbO2. Phys. Rev. B 90, 115135 (2014)

    Article  CAS  Google Scholar 

  44. Joshi, T., Senty, T.R., Borisov, P., Bristow, A.D., Lederman, D.: Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices. J. Phys. D 48, 335308 (2015)

    Article  CAS  Google Scholar 

  45. Georgiou, P., Walton, J., Simitzis, J.: Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption. Electrochim. Acta 55, 1207 (2010)

    Article  CAS  Google Scholar 

  46. Frackowiak, E., Gautier, S., Gaucher, H., Bonnamy, S., Beguin, F.: Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 37, 61 (1999)

    Article  CAS  Google Scholar 

  47. Obrovac, M.N., Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Solid State Lett. 7, A93 (2004)

    Article  CAS  Google Scholar 

  48. Wei, M., Wei, K., Ichihara, M., Zhou, H.: Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 10, 980 (2008)

    Article  CAS  Google Scholar 

  49. Chan, C.K., Ruffo, R., Hong, S.S., Huggins, R.A., Cui, Y.: Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sour. 189, 34 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (2015R1A5A7037615, 2019R1F1A1062835, and 2019R1A6A3A01094741). This research was also financially supported from the Civil-Military Technology cooperation program (No.18-CM-MA-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunjoo Choi or Jae-Hun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Kim, K., Kim, HS. et al. Microstructure Design of Carbon-Coated Nb2O5–Si Composites as Reversible Li Storage Materials. Electron. Mater. Lett. 16, 376–384 (2020). https://doi.org/10.1007/s13391-020-00220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00220-5

Keywords

Navigation