Skip to main content
Log in

Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a systematic work to design a void-shell nanostructures for improving the stability of silicon electrodes while alloying with lithium. To enhance the electrical conductivity, silicon is coated with carbon by using a simple and non-hazard route prior to embedding the Si particles in silicon carbonitride (SiCN). An inactive matrix, namely a polymer-derived SiCN ceramic is used to stabilize the composite. Additionally, cavities around silicon to accommodate volume changes are introduced by partial carbon burning. Significant increase in porosity of more than one order of magnitude is found by means of BET measurements for the samples obtained after additional heat treatment in air. TGA coupled with FTIR spectrometry shows that the ceramic matrix is stable upon heating, while burned carbon originates from pyrolyzed fructose. TEM micrographs confirm the presence of carbon/void around silicon particles embedded in the ceramic matrix. Electrochemical investigations reveal an improved conductivity due to the presence of carbon coating. Contribution of silicon in lithium storage is identified, whereas voids introduced around the silicon particles are found to improve cycling stability of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7(5):A93–A96

    Article  Google Scholar 

  2. Li J, Dahn JR (2007) An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154(3):A156–A161

    Article  Google Scholar 

  3. Wachtler M, Besenhard JO, Winter M (2001) Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sources 94(2):189–193

    Article  Google Scholar 

  4. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531

    Article  Google Scholar 

  5. Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Peres JP, Talaga D, Couzi M, Tarascon JM (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon carbon composites. Adv Funct Mater 17(11):1765–1774

    Article  Google Scholar 

  6. Liu WR, Wang JH, Wu HC, Shieh DT, Yang MH, Wu NL (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Eletrochem Soc 152(9):A1719–A1725

    Article  Google Scholar 

  7. Yang XL, Wen ZY, Xu XX, Lin B, Lin ZX (2006) High-performance silicon/carbon/graphite composites as anode materials for lithium ion batteries. J Electrochem Soc 153(7):A1341–A1344

    Article  Google Scholar 

  8. Kim I-S, Kumta PN (2004) High capacity Si/C nanocomposite anodes for Li-ion batteries. J Power Sources 136(1):145–149

    Article  Google Scholar 

  9. Kim IS, Blomgren GE, Kumta PN (2004) Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling. J Power Sources 130:275–280

    Article  Google Scholar 

  10. Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48(11):1579–1587

    Article  Google Scholar 

  11. Mazouzi D, Lestriez B, Roue L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid State Lett 12(11):A215–A218

    Article  Google Scholar 

  12. Martin C, Alias M, Christien F, Crosnier O, Belanger D, Brousse T (2009) Graphite-grafted silicon nanocomposite as a negative electrode for lithium-ion batteries. Adv Mater 21(46):4735–4741

    Article  Google Scholar 

  13. Chen B, Flatt AK, Jian H, Hudson JL, Tour JM (2005) Molecular grafting to silicon surfaces in air using organic triazenes as stable diazonium sources and HF as a constant hydride-passivation source. Chem Mater 17(19):4832–4836

    Article  Google Scholar 

  14. Xu YH, Yin GP, Zuo PJ (2008) Geometric and electronic studies of Li15Si4 for silicon anode. Electrochim Acta 54(2):341–345

    Article  Google Scholar 

  15. Martin C, Crosnier O, Retoux R, Belanger D, Schleich DM, Brousse T (2011) Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries. Adv Funct Mater 21(18):3524–3530

    Article  Google Scholar 

  16. Yang S, Li G, Zhu Q, Pan Q (2012) Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. J Mater Chem 22:3420–3425

    Article  Google Scholar 

  17. Chen D, Yi R, Chen S, Xu T, Gordin ML, Wang D (2014) Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics 254:65–71

    Article  Google Scholar 

  18. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35

    Article  Google Scholar 

  19. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189(1):34–39

    Article  Google Scholar 

  20. Vlad A, Reddy ALM, Ajayan A, Singh N, Gohy J-Fo, Melinte S, Ajayan PM (2012) Roll up nanowire battery from silicon chips. Proc Natl Acad Sci 109(38):15168–15173

    Article  Google Scholar 

  21. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    Article  Google Scholar 

  22. Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y (2012) Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett 12(2):904–909

    Article  Google Scholar 

  23. Yue L, Zhang W, Yang J, Zhang L (2014) Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim Acta 125:206–217

    Article  Google Scholar 

  24. Zhou X, Tang J, Yang J, Xie J, Lulu M (2013) Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668

    Article  Google Scholar 

  25. Li X, Meduri P, Chen X, Qi W, Engelhard MH, Xu W, Ding F, Xiao J, Wang W, Wang C, Zhang J-G, Liu J (2012) Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J Mater Chem 22(22):11014–11017

    Article  Google Scholar 

  26. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4(1):56–72

    Article  Google Scholar 

  27. Kaspar J, Graczyk-Zajac M, Lauterbach S, Kleebe H-J, Riedel R (2014) Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. J Power Sources 269:164–172

    Article  Google Scholar 

  28. Reinold LM, Graczyk-Zajac M, Gao Y, Mera G, Riedel R (2013) Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries. J Power Sources 236:224–229

    Article  Google Scholar 

  29. Reinold LM, Yamada Y, Graczyk-Zajac M, Munakata H, Kanamura K, Riedel R (2015) The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries. J Power Sources 282:409–415

    Article  Google Scholar 

  30. Baek S-H, Reinold LM, Graczyk-Zajac M, Riedel R, Hammerath F, Buchner B, Grafe H-J (2014) Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance. J Power Sources 253:342–348

    Article  Google Scholar 

  31. Graczyk-Zajac M, Fasel C, Riedel R (2011) Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. J Power Sources 196(15):6412–6418

    Article  Google Scholar 

  32. Bhandavat R, Singh G (2012) Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-Ion battery anode. ACS Appl Mater Inter 4(10):5092–5097. doi:10.1021/am3015795

    Article  Google Scholar 

  33. Reinold LM, Graczyk-Zajac M, Fasel C, Riedel R (2011) Prevention of solid electrolyte interphase damaging on silicon by using polymer derived SiCN ceramics. ECS Trans 35:37–44

    Article  Google Scholar 

  34. David L, Bhandavat R, Barrera U, Singh G (2015) Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Scientific Rep 5(9792):1–7

    Google Scholar 

  35. David L, Bernard S, Gervais C, Miele P, Singh G (2015) Facile synthesis and high rate capability of silicon carbonitride/boron nitride composite with a sheet-like morphology. J Phys Chem C 119(5):2783–2791

    Google Scholar 

  36. David L, Asok D, Singh G (2014) Synthesis and extreme rate capability of SiAlCN functionalized carbon nanotube spray-on coatings as Li-Ion battery electrode. ACS Appl Mater Inter 6(18):16056–16064

    Article  Google Scholar 

  37. Bhandavat R, Singh G (2013) Stable and efficient Li-Ion battery anodes prepared from polymer-derived silicon oxycarbide carbon nanotube shell/core composites. J Phys Chem C 117(23):11899–11905. doi:10.1021/jp310733b

    Article  Google Scholar 

  38. Joho F, Novak P, Spahr ME (2002) Safety aspects of graphite negative electrode materials for lithium-ion batteries. J Electrochem Soc 149(8):A1020–A1024

    Article  Google Scholar 

  39. Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J Mater Chem A 1(12):3826–3836

    Article  Google Scholar 

  40. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  41. de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) Studies on pore systems in catalysts: VII. description of the pore dimensions of carbon blacks by the t method. J Catal 4(6):649–653

    Article  Google Scholar 

  42. Colombo P, Riedel R, Soraru GD, Kleebe H-J (2010) Polymer derived ceramics: from nano-structure to applications. DEStech Publications Inc, Lancaster

    Book  Google Scholar 

  43. Schitco C, Bazarjani MS, Riedel R, Gurlo A (2015) NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N2 and CO2 adsorption and small angle X-ray scattering study. J Mater Chem A 3:805–818

    Article  Google Scholar 

  44. Park J-K (2012) Principles and applications of lithium secondary batteries. Wiley-VCH Verlag GmbH & Co, KGaA

    Book  Google Scholar 

  45. Graczyk-Zajac M, Wimmer M, Neumann C, Riedel R (2015) Lithium intercalation into SiCN/disordered carbon composite. Part 1: influence of initial carbon porosity on cycling performance/capacitygraczyk2015. J Solid State Electrochem 19:2763–2769

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the German Research Foundation (DFG) SPP1473/JP8. We thank Christina Schitco for fruitful discussions and attentive manuscript proof reading. Furthermore, we also thank Ulrike Kunz, Claudia Fasel, and Cristina Schitco for their help with material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Graczyk-Zajac.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrankovic, D., Reinold, L.M., Riedel, R. et al. Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. J Mater Sci 51, 6051–6061 (2016). https://doi.org/10.1007/s10853-016-9911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9911-x

Keywords

Navigation