Skip to main content
Log in

Reduced nanostructured titanium oxide coating as an electrocatalyst support for methanol oxidation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, Pt nanoparticles were deposited on chemically reduced TiO2 (R-TiO2) coated carbon nanotubes (CNTs) using a polyol method followed by a heat treatment. The R-TiO2 coating, in form of Ti2O3, was proved to be electroconductive and could be obtained from borohydride reduction and heat treatment at 400 °C. Pt particles were also loaded on bare CNTs by the same deposition method. These Pt nanoparticles on both supports exhibit similar size and specific electrochemical surfaces (ESAs). Instrumental analytical methods such as X-ray diffraction and X-ray photoelectron spectroscopy, as well as electrochemical techniques, supports the effectiveness of chemical reduction on TiO2. Although owning very close particle size and ESA, the Pt catalysts loaded on R-TiO2 exhibit double current density to the one of Pt/CNTs in methanol cyclic voltammetric and chronoamperometric test at 0.5 V versus Ag/AgCl. Our experimental results show that the introduction of a thin layer of R-TiO2 could drastically improve the Pt performance during methanol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763

    Article  Google Scholar 

  2. Wang Z, Chen G, Xia D, Zhang L (2008) Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol. J Alloy Compd 450:148–151

    Article  Google Scholar 

  3. Song SQ, Zhou WJ, Zhou ZH et al (2005) Direct ethanol PEM fuel cells: the case of platinum based anodes. Int J Hydrogen Energy 30:995–1001

    Article  Google Scholar 

  4. Mayrhofer KJJ, Meier JC, Ashton SJ et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10:1144–1147

    Article  Google Scholar 

  5. Fuentes RE, García BL, Weidner JW (2011) Effect of titanium dioxide supports on the activity of Pt-Ru toward electrochemical oxidation of methanol. J Electrochem Soc 158:B461–B466

    Article  Google Scholar 

  6. Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Advances 4:9701–9708

    Article  Google Scholar 

  7. Cui Z, Feng L, Liu C, Xing W (2011) Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. J Power Sources 196:2621–2626

    Article  Google Scholar 

  8. Hepel M, Dela I, Hepel T, Luo J, Zhong CJ (2007) Novel dynamic effects in electrocatalysis of methanol oxidation on supported nanoporous TiO2 bimetallic nanocatalysts. Electrochim Acta 52:5529–5547

    Article  Google Scholar 

  9. Tsumura T, Kojitani N, Izumi I, Iwashita N, Toyoda M, Inagaki M (2002) Carbon coating of anatase-type TiO2 and photoactivity. J Mater Chem 12:1391–1396

    Article  Google Scholar 

  10. Izumi Y, Itoi T, Peng S, Oka K, Shibata Y (2009) Site structure and photocatalytic role of sulfur or nitrogen-doped titanium oxide with uniform mesopores under visible light. J Phys Chem C 113:6706–6718

    Article  Google Scholar 

  11. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772

    Article  Google Scholar 

  12. Antolini E, Gonzalez ER (2009) Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ion 180:746–763

    Article  Google Scholar 

  13. Tripković V, Abild-Pedersen F, Studt F et al (2012) Metal oxide-supported platinum overlayers as proton-exchange membrane fuel cell cathodes. ChemCatChem 4:228–235

    Article  Google Scholar 

  14. De Souza RFB, Buzzo GS, Silva JCM, Spinacé EV, Neto AO, Assumpção MHMT (2014) Effect of TiO2 content on ethanol electrooxidation in alkaline media using Pt nanoparticles supported on physical mixtures of carbon and TiO2 as electrocatalysts. Electrocatalysis 5:213–219

    Article  Google Scholar 

  15. Sui X-L, Wang Z-B, Yang M, Huo L, Gu D-M, Yin G-P (2014) Investigation on C-TiO2 nanotubes composite as Pt catalyst support for methanol electrooxidation. J Power Sources 255:43–51

    Article  Google Scholar 

  16. Akalework NG, Pan C-J, Su W-N et al (2012) Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. J Mater Chem 22:20977–20985

    Article  Google Scholar 

  17. Fuentes RE, Farell J, Weidner JW (2011) Multimetallic electrocatalysts of Pt, Ru, and Ir supported on anatase and rutile TiO2 for oxygen evolution in an acid environment. Electrochem Solid-State Lett 14:E5–E7

    Article  Google Scholar 

  18. Huang K, Sasaki K, Adzic RR, Xing Y (2012) Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. J Mater Chem 22:16824–16832

    Article  Google Scholar 

  19. Huang S-Y, Ganesan P, Popov BN (2012) Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catal 2:825–831

    Article  Google Scholar 

  20. Yan L, Huang K, Chen Y, Xing Y (2014) High content niobium in rutile titania as catalyst support to promote methanol electro-oxidation. ECS Electrochem Lett 3:F27–F29

    Article  Google Scholar 

  21. Qin Y-H, Li Y, Lv R-L, Wang T-L, Wang W-G, Wang C-W (2015) Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support. J Power Sources 278:639–644

    Article  Google Scholar 

  22. Huang K, Li Y, Xing Y (2013) Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity. J Mater Res 28:454–460

    Article  Google Scholar 

  23. Rüdiger C, Brumbarov J, Wiesinger F et al (2013) Ethanol oxidation on TiOxCy-supported Pt nanoparticles. ChemCatChem 5:3219–3223

    Article  Google Scholar 

  24. Fan Y, Yang Z, Huang P, Zhang X, Liu Y-M (2013) Pt/TiO2−C with hetero interfaces as enhanced catalyst for methanol electrooxidation. Electrochim Acta 105:157–161

    Article  Google Scholar 

  25. Song H, Qiu X, Li F, Zhu W, Chen L (2007) Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem Commun 9:1416–1421

    Article  Google Scholar 

  26. Guo D-J, Qiu X-P, Chen L-Q, Zhu W-T (2009) Multi-walled carbon nanotubes modified by sulfated TiO2—a promising support for Pt catalyst in a direct ethanol fuel cell. Carbon 47:1680–1685

    Article  Google Scholar 

  27. Huang S-Y, Ganesan P, Popov BN (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B 96:224–231

    Article  Google Scholar 

  28. Rigdon WA, Larrabee D, Huang X (2013) Composite carbon nanotube and titania catalyst supports for enhanced activity and durability. ECS Trans 58:1809–1821

    Article  Google Scholar 

  29. Tominaka S (2012) Facile synthesis of nanostructured reduced titanium oxides using borohydride toward the creation of oxide-based fuel cell electrodes. Chem Commun 48:7949–7951

    Article  Google Scholar 

  30. Afifi MA, Abdel-Aziz MM, Yahia IS, Fadel M, Wahab LA (2008) Transport properties of polycrystalline TiO2 and Ti2O3 as semiconducting oxides. J Alloy Compd 455:92–97

    Article  Google Scholar 

  31. Simcock MN (2006) Thin film growth of TiO2 and Ti2O3 by the new method of liquid injection CVD investigated using optical interferometry XRD and AFM. Surf Interface Anal 38:1122–1129

    Article  Google Scholar 

  32. Kurtz RL, Henrich VE (1998) Comparison of Ti 2p core-level peaks from TiO2, Ti2O3, and Ti metal, by XPS. Surf Sci Spectra 5:179–181

    Article  Google Scholar 

  33. Hayden BE (2013) Particle size and support effects in electrocatalysis. Acc Chem Res 46:1858–1866

    Article  Google Scholar 

  34. Cherstiouk OV, Simonov PA, Savinova ER (2003) Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim Acta 48:3851–3860

    Article  Google Scholar 

  35. Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER (2003) CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J Electroanal Chem 554–555:241–251

    Article  Google Scholar 

  36. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  37. Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  38. Bonanni S, Aït-Mansour K, Harbich W, Brune H (2012) Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J Am Chem Soc 134:3445–3450

    Article  Google Scholar 

  39. Horsley JA (1979) A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide. J Am Chem Soc 101:2870–2874

    Article  Google Scholar 

  40. Sanchez MG, Gazquez JL (1987) Oxygen vacancy model in strong metal-support interaction. J Catal 104:120–135

    Article  Google Scholar 

  41. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394

    Article  Google Scholar 

  42. Tang S, Xiong G, Wang H (1988) The nature of the SMSI state of the PtTiO2 system. J Catal 111:136–145

    Article  Google Scholar 

  43. Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115:20153–20159

    Article  Google Scholar 

  44. Wang M, D-J Guo, H-L Li (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J Solid State Chem 178:1996–2000

    Article  Google Scholar 

  45. He D, Yang L, Kuang S, Cai Q (2007) Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation. Electrochem Commun 9:2467–2472

    Article  Google Scholar 

  46. Hayden BE, Pletcher D, Suchsland J-P, Williams LJ (2009) The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys Chem Chem Phys 11:1564–1570

    Article  Google Scholar 

  47. Hayden BE, Malevich DV, Pletcher D (2001) Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions. Electrochem Commun 3:395–399

    Article  Google Scholar 

  48. Vračar LM, Gojković SL, Elezović N, Radmilović V, Jakšić M, Krstajić N (2006) Magneli phase titanium oxides as catalyst support-electrochemical behavior of Ebonex/Pt catalysts. J New Mater Electrochem Syst 9:99–106

    Google Scholar 

  49. Hua H, Hu C, Zhao Z, Liu H, Xie X, Xi Y (2013) Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation. Electrochim Acta 105:130–136

    Article  Google Scholar 

  50. Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial supports from the National Natural Science Foundation of China (Contract Number: 21373103) and Jiangsu Province Natural Science Foundation (No. BK2011260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Ding, W., Liu, Y. et al. Reduced nanostructured titanium oxide coating as an electrocatalyst support for methanol oxidation. J Mater Sci 50, 3875–3882 (2015). https://doi.org/10.1007/s10853-015-8903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8903-6

Keywords

Navigation