Skip to main content
Log in

Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric, X-ray, Mossbauer and magnetization studies of (1 − x)PbFe0.5Ta0.5O3–(x)PbTiO3 ceramics with 0 ≤ x ≤ 0.3 have been carried out to determine the compositional evolution of ferroelectric and magnetic phase transition temperatures. Addition of PbTiO3 to PbFe0.5Ta0.5O3 increases the temperature T m of the dielectric permittivity maximum, decreases both the diffusion of this maximum and its frequency dependence. However, the Curie–Weiss temperature exceeds T m for all the compositions studied, indicating that the phase transition still remains diffused. Dilution of the (Fe, Ta)-sublattice by Ti lowers the Neel temperature T N but above a certain compositional threshold (x ≈ 0.1) fast lowering of T N stops and a new magnetic state stable in a rather wide compositional range appears. Large difference between the zero-field-cooled (ZFC) and FC magnetization–temperature curves as well as between the temperatures of magnetic phase transition determined from Mossbauer and magnetization studies for compositions with x > 0.1 implies that this state is a spin-glass phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khomskii DI (2006) Multiferroics: different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 306:1–8

    Article  Google Scholar 

  2. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D 38:R123–R152

    Article  Google Scholar 

  3. Kleemann W, Shvartsman VV, Borisov P, Kania A (2010) Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys Rev Lett 105:257202-1–257202-4

    Article  Google Scholar 

  4. Sanchez DA, Ortega N, Kumar A et al (2011) Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv 1:042169-1–042169-14

    Article  Google Scholar 

  5. Lehmann AG, Sciau P (1999) Ferroelastic symmetry changes in the perovskite PbFe0.5Ta0.5O3. J Phys Condens Matter 11:1235–1245

    Article  Google Scholar 

  6. Lampis N, Sciau P, Lehmann AG (2000) Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3. J Phys Condens Matter 12:2367–2378

    Article  Google Scholar 

  7. Nomura S, Takabayashi H, Nakagawa T (1968) Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn J Appl Phys 7:600–604

    Article  Google Scholar 

  8. Falqui A, Lampis N, Geddo-Lehmann A, Pinna G (2005) Low-temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. J Phys Chem B 109:22967–22970

    Article  Google Scholar 

  9. Martinez R, Palai R, Huhtinen H, Liu J, Scott JF, Katiyar RS (2010) Nanoscale ordering and multiferroic behavior in PbFe1/2Ta1/2O3. Phys Rev B 82:134104-1–134104-10

    Google Scholar 

  10. Shvorneva LI, Venevtsev YuN (1965) Perovskites with ferroelectromagnetic properties. Sov Phys JETP 22:722–725

    Google Scholar 

  11. Kubrin SP, Raevskaya SI, Kuropatkina SA, Raevski IP, Sarychev DA (2006) Dielectric and Mossbauer studies of B-cation order–disorder effect on the properties of Pb(Fe1/2Ta1/2)O3 relaxor ferroelectric. Ferroelectrics 340:155–159

    Article  Google Scholar 

  12. Gilleo MA (1960) Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids 13:33–39

    Article  Google Scholar 

  13. Bokov AA, Shonov VYu, Rayevsky IP, Gagarina ES, Kupriyanov MF (1993) Compositional ordering and phase transitions in PbYb1/2Nb1/2O3. J Phys Condens Matter 5:5491–5504

    Article  Google Scholar 

  14. Raevski IP, Prosandeev SA, Emelyanov SM et al (2004) Comparative study of cation ordering effects in single crystals of 1:1 and 1:2 complex perovskites solid solutions. Ferroelectrics 298:267–274

    Article  Google Scholar 

  15. Raevski IP, Kubrin SP, Raevskaya SI et al (2009) Experimental evidence of the crucial role of nonmagnetic Pb cations in the enhancement of the Neel temperature in perovskite Pb1−x Ba x Fe1/2Nb1/2O3. Phys Rev B 80:024108-1–024108-6

    Article  Google Scholar 

  16. Raevski IP, Kubrin SP, Raevskaya SI et al (2012) Magnetic properties of PbFe1/2Nb1/2O3: Mossbauer spectroscopy and first principles calculations. Phys Rev B 85:224412-1–224412-5

    Article  Google Scholar 

  17. Laguta VV, Rosa J, Jastrabik L et al (2010) 93Nb NMR and Fe3+ EPR study of local magnetic properties of disordered magnetoelectric PbFe1/2Nb1/2O3. Mater Res Bull 45:1720–1727

    Article  Google Scholar 

  18. Cho SY, Kim JS, Jang MS (2006) Dielectric, ferroelectric and ferromagnetic properties of 0.8PbFe0.5Ta0.5O3–0.2PbTiO3 ceramics. J Electroceram 16:369–372

    Article  Google Scholar 

  19. Shonov VYu, Raevski IP, Bokov AA (1996) Electrophysical properties of ferroelectric solid solutions xPbFe1/2Ta1/2O3yPFe1/2Nb1/2O3–(1 – x − y)PbMg1/3Nb2/3O3 Zhurnal Tekhnicheskoi Fiziki 66:98–102. Engl Transl Tech Phys 4:166–168 (in Russian)

    Google Scholar 

  20. Zhu WZ, Kholkin A, Mantas PQ, Baptista JL (2000) Preparation and characterization of Pb(Fe1/2Ta1/2)O3 relaxor ferroelectric. J Eur Ceram Soc 20:2029–2034

    Article  Google Scholar 

  21. Raevski IP, Kirillov ST, Malitskaya MA et al (1988) Phase transitions and ferroelectric properties of lead ferroniobate, Izv AN SSSR Neorg Mater 24:286–289. Engl Transl Inorg Mater 24:217–220 (in Russian)

    Google Scholar 

  22. Sitalo EI, Raevski IP, Lutokhin AG et al (2011) Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3–PbTiO3 ceramics from the morphotropic phase boundary compositional range. IEEE Trans Ultrason Ferroelectr Freq Control 58:1914–1918

    Article  Google Scholar 

  23. Swartz SL, Shrout TR (1982) Fabrication of perovskite lead magnesium niobate. Mater Res Bull 17:1245–1250

    Article  Google Scholar 

  24. Choudhury RNP, Rodrıguez C, Bhattacharya P, Katiyar RS, Rinaldi C (2007) Low-frequency dielectric dispersion and magnetic properties of La, Gd modified Pb(Fe1/2Ta1/2)O3 multiferroics. J Magn Magn Mater 313:253–260

    Article  Google Scholar 

  25. Kulawik J, Szwagierczak D (2007) Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J Eur Ceram Soc 27:2281–2286

    Article  Google Scholar 

  26. Bormanis K, Burkhanov AI, Vaingolts AI, Kalvane A (2011) The effect of bias field on dielectric response in lead ferrotantalate ceramics. Integr Ferroelectr 123:144–147

    Article  Google Scholar 

  27. Lei C, Bokov AA, Ye Z-G (2007) Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J Appl Phys 101:084105–1–084105-9

    Google Scholar 

  28. Bokov AA, Bing Y-H, Chen W et al (2003) Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys Rev B 68:052102-1–052102-4

    Article  Google Scholar 

  29. Bokov A, Luo H, Ye Z-G (2005) Polar nanodomains and relaxor behaviour in (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 crystals with x = 0.3–0.5. Mater Sci Eng B 120:206–209

    Article  Google Scholar 

  30. Raevski IP, Kubrin SP, Raevskaya SI et al (2012) Dielectric and Mossbauer studies of ferroelectric and magnetic phase transitions in A-Site and B-Site substituted multiferroic PbFe0.5Nb0.5O3. IEEE Trans Ultrason Ferroelectr Freq Control 59:1872–1878

    Article  Google Scholar 

  31. Singh SP, Yusuf SM, Yoon S, Baik S, Shin N, Pandey D (2010) Ferroic transitions in the multiferroic (1 − x)Pb(Fe1/2Nb1/2)O3xPbTiO3 system and its phase diagram. Acta Mater 58:5381–5392

    Article  Google Scholar 

  32. Laguta VV, Glinchuk MD, Maryško M et al (2013) Effect of the Ba and Ti-doping on the magnetic properties of multiferroic Pb(Fe1/2Nb1/2)O3. Phys Rev B 87:064403-1–064403-8

    Article  Google Scholar 

  33. Guzdek P, Sikora M, Gora L, Kapusta Cz (2012) Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites. J Eur Ceram Soc 32:2007–2011

    Article  Google Scholar 

  34. Campbell IA (1986) Spin glasses and reentrant alloys. Hyperfine Interact 27:15–22

    Article  Google Scholar 

  35. Albanese G, Watts BE, Leccabue F, Diaz Castanon S (1998) Mossbauer and magnetic studies of PbFe12−x Cr x O19 hexagonal ferrites. J Magn Magn Mater 184:337–343

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the Russian Foundation for Basic Research (RFBR) Project 12-08-00887_a and Research Committee of the University of Macau under Research and Development Grant for Chair Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Raevski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raevski, I.P., Titov, V.V., Malitskaya, M.A. et al. Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics. J Mater Sci 49, 6459–6466 (2014). https://doi.org/10.1007/s10853-014-8376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8376-z

Keywords

Navigation