Skip to main content
Log in

Local structure and electron spin resonance of copper-doped SrTiO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report X-ray diffraction and electron spin resonance (ESR) measurements of the effect of SrTiO3 ceramics doping using Cu2+ ions. ESR measurements reveal two kinds of Cu2+ centers in weakly (0.2–0.5 mol% Cu) doped SrTiO3. Both kinds of centers have been attributed to Cu2+ at octahedral Ti sites and possibly associated either with a nearest-neighboring oxygen vacancy (center #1) or some other positively charged defect (center #2). The ESR spectra of the above centers are described by the following spin Hamiltonian parameters: g  = 2.263(1), g  = 2.041(1), A  = 170(1) × 10−4 cm−1, A  = 27(1) × 10−4 cm−1 (center #1) and g  = 2.334(1), g  = 2.059(1), A  = 137(1) × 10−4 cm−1, A  ≈ 0(1) × 10−4 cm−1 (center #2). For copper concentration larger than 2 mol%, the antiferromagnetic SrCu3Ti4O12 (SCTO) phase has been detected by both X-ray diffraction and ESR. Its volume increases with increase of Cu concentration reaching about 17 % at Cu doping of 20 mol%. The composite SrTiO3–SCTO ceramics exhibits substantial magnetocapacitance effect, which could be enhanced by electrostriction of SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See ftp.bam.de/Powder_Cell/pcw23.exe

References

  1. Bednorz JG, Muller KA (1984) Phys Rev Lett 52:2289

    Article  CAS  Google Scholar 

  2. Kleemann W, Shvartsman VV, Bedanta S, Borisov P, Tkach A, Vilarinho PM (2008) J Phys Condens Matter 20:434216

    Article  Google Scholar 

  3. Shvartsman VV, Bedanta S, Borisov P, Kleemann W, Tkach A, Vilarinho PM (2008) Phys Rev Lett 101:165704

    Article  CAS  Google Scholar 

  4. Laguta VV, Kondakova IV, Bykov IP, Glinchuk MD, Tkach A, Vilarinho PM, Jastrabik L (2007) Phys Rev B 76:054104

    Article  Google Scholar 

  5. Kuzian RO, Laguta VV, Dare A-M, Kondakova IV, Marysko M, Raymond L, Garmash EP, Pavlikov VN, Tkach A, Vilarinho PM, Hayn R (2010) Europhys Lett 92:17007

    Article  Google Scholar 

  6. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  7. Ayala A, Holesinger TG, Clem PG, Matias V, Jia QX, Wang H, Foltyn SR, Gibbons B (2005) IEEE Trans Appl Superconduct 15:2703

    Article  CAS  Google Scholar 

  8. Grivel J-C (2008) J Alloy Compd 464:457

    Article  CAS  Google Scholar 

  9. Li J, Subramanian MA, Rosenfeld HD, Jones CY, Toby BH, Sleight AW (2004) Chem Mater 16:5223

    Article  CAS  Google Scholar 

  10. Mori D, Shimoi M, Kato Y, Katsumata T, Hiraki K-I, Takahashi T, Inaguma Y (2011) Ferroelectrics 414:180

    Article  CAS  Google Scholar 

  11. Langhammer HTh, Müller Th, Böttcher R, Abicht H-P (2003) Solid State Sci 5:965

    Article  CAS  Google Scholar 

  12. Keeble DJ, Lit Z, Harmatzs M (1996) J Phys Chem Solids 57:1513

    Article  CAS  Google Scholar 

  13. Abraham MM, Boatner LA, Olson DN, Hochli UT (1984) J Chem Phys 81:2528

    Article  CAS  Google Scholar 

  14. Bykov IP, Laguta VV, Glinchuk MD, Karmazin AA (1985) Fizika Tverdogo Tela 27:1908 in Russian

    CAS  Google Scholar 

  15. Badalyan AG, Trepakov VA, Azzoni CB, Galinetto P, Mozzati MC, Jastrabik L, Rosa J, Kapphan SE, Hrabovsky M (2005) Phys Status Solidi C 2:141

    Article  CAS  Google Scholar 

  16. Tkach A, Vilarinho PM, Kholkin AL (2005) Acta Mater 53:5061

    Article  CAS  Google Scholar 

  17. Choudhary RNP, Bhunia U (2002) J Mater Sci 37:5177. doi:10.1023/A:1021019412533

    Article  CAS  Google Scholar 

  18. Subramanian MA, Sleight AW (2002) Solid State Sci 4:347

    Article  CAS  Google Scholar 

  19. Muller KA (1958) Helv Phys Acta 31:173

    CAS  Google Scholar 

  20. Griffith JS (1964) The theory of transition-metal ions. Cambridge University Press, London

    Google Scholar 

  21. Abragam A, Bleaney B (1986) Electron paramagnetic resonance of transition ions. Dover Publications, New York

    Google Scholar 

  22. Dietz RE, Kaikimura H, Sturge MD, Yariv A (1963) Phys Rev 132:1559

    Article  CAS  Google Scholar 

  23. Morigaki K (1964) J Phys Soc Jpn 19:1240

    Article  CAS  Google Scholar 

  24. Mozzati MC, Azzoni CB, Capsoni D, Bini M, Massarotti V (2003) J Phys 15:7365

    CAS  Google Scholar 

  25. Huber DL (1972) Phys Rev B 6:3180

    Article  CAS  Google Scholar 

  26. Katsufuji T, Takagi H (2001) Phys Rev B 64:054415

    Article  Google Scholar 

  27. Yang Y, Liu J-M, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Phys Rev B 70:132101

    Article  Google Scholar 

  28. Grubbs RK, Venturini EL, Clem PG, Richardson JJ, Tuttle BA, Samara GA (2005) Phys Rev B 72:104111

    Article  Google Scholar 

Download references

Acknowledgements

V.V.L. is grateful to the support by the large infrastructure SAFMAT CZ.2.16/3.1.00/22132 project and M.D.G., E.E.A. and V.N.P. gratefully acknowledge financial support from Science and Technology Center of Ukraine, STCU project 5514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Laguta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laguta, V.V., Scherbina, O.I., Garmash, E.P. et al. Local structure and electron spin resonance of copper-doped SrTiO3 ceramics. J Mater Sci 48, 4016–4022 (2013). https://doi.org/10.1007/s10853-013-7213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7213-0

Keywords

Navigation