Skip to main content
Log in

Elevated temperature deformation of Zr to large strains

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents new data and a summarization of earlier work, especially by the authors, regarding the large strain deformation (generally severe plastic deformation) of pure zirconium, generally at elevated temperatures (300–800 °C range). It appears clear, now, that Zr deforms by classic five-power-law creep. Large strain deformation revealed recovery controlled mechanisms with grain refinement occurring by geometric necessary boundaries and/or the recovery-based mechanism of geometric dynamic recrystallization depending on the amount of grain elongation that occurs. No discontinuous dynamic recrystallization or grain growth was observed in the authors’ tension and rolling studies. The refined ultra-fine grained substructure showed dramatically improved tensile properties over conventionally processed Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hayes TA, Kassner ME, Rosen RS (2002) Metall Mater Trans 33A:337

    Article  CAS  Google Scholar 

  2. Hayes TA, Kassner ME (2006) Metall Mater Trans 37A:2389

    Article  CAS  Google Scholar 

  3. Barrabes SR, Kassner ME, Perez-Prado MT, Evangelista E (2004) Recryst Grain Growth 467–470:1145

    Google Scholar 

  4. Jiang L, Perez-Prado MT, Gruber P, Arzt E, Ruano OA, Kassner ME (2008) Acta Mater 56:1228

    Article  CAS  Google Scholar 

  5. Jiang L, Ruano OA, Kassner ME, Perez-Prado MT (2007) J Metals 59:42

    CAS  Google Scholar 

  6. Kad BK, Gebert JM, Perez-Prado MT, Kassner ME, Meyers MA (2006) Acta Mater 54:4111

    Article  CAS  Google Scholar 

  7. Hayes TA, Kassner ME, Rosen RS (2006) J Nucl Mater 353:109

    Article  CAS  Google Scholar 

  8. Perez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP (2008) Scripta Mater 58:219

    Article  CAS  Google Scholar 

  9. Perez-Prado MT, Barrabes SR, Kassner ME, Evangelista E (2005) Acta Mater 53:581

    Article  CAS  Google Scholar 

  10. McQueen HJ, Kassner ME (2004) Scripta Mater 51:461

    Article  CAS  Google Scholar 

  11. Jiang L, Perez-Prado MT, Ruano O, Kassner ME (2008) Mater Sci Forum 584–586:243

    Article  Google Scholar 

  12. Sabirov I, Molina-Aldareguia JM, Jiang L, Kassner ME, Perez-Prado MT (2011) In: Belfast, G. Menary (eds) Effect of accumulative roll bonding on plastic flow properties of commercially pure zirconium. Proceedings ESAFORM Conference on AIP 1353:487

  13. Ardell AJ, Sherby OD (1967) Trans Metall Soc AIME 239:1547

    CAS  Google Scholar 

  14. Gilbert ER, Duran SA, Bement AL (1969) Applications-related phenomena for zirconium and its alloys, ASTM STP 458. American Society for Testing and Materials, Philadelphia, p 210

    Book  Google Scholar 

  15. MacEwen SR, Fleck RG, Ho ETC, Woo OT (1981) Metall Trans A 12A:1751

    Google Scholar 

  16. Pahutova M, Cadek J (1973) Mater Sci Eng 11:151

    Article  Google Scholar 

  17. Bernstein IM (1967) Trans Metall Soc AIME 239:1518

    CAS  Google Scholar 

  18. Warda RD, Fidleris V, Teghtsoonian E (1973) Metall Trans 4:1201

    Article  CAS  Google Scholar 

  19. Garde AM (1979) J Nucl Mater 80:195

    Article  CAS  Google Scholar 

  20. Kassner ME, Pérez-Prado MT, Vecchio KS, Wall MA (2000) Acta Mater 48:4247

    Article  CAS  Google Scholar 

  21. Lubbehusen M, Vierregge K, Hood GM, Mehrer H, Herzig CHR (1991) J Nucl Mater 182:164

    Article  CAS  Google Scholar 

  22. Dyment F, Libanati CM (1968) J Mater Sci 3:349. doi:10.1007/BF00550978

    Article  CAS  Google Scholar 

  23. Horvath J, Dyment F, Mehrer H (1984) J Nucl Mater 126:206

    Article  CAS  Google Scholar 

  24. Federov GB, Zhomov FI (1959) Metal 1:161

    Google Scholar 

  25. Borisov EV, Godin YuG, Gruzin PL, Eustyukin AJ, Emelyanov VSA (1958) In: Use of isotopes and radiation on All-Union Conference, Moscow Metall Metallog: 291

  26. Lyashenko VS, Bykov VN, Pavlinov LB (1960) Phys Metall Metallog 8:40

    Google Scholar 

  27. Flubacher P (1963) EIR Bericht Nr 49:14

    Google Scholar 

  28. Hood GM (1988) J Nucl Mater 159:149

    Article  CAS  Google Scholar 

  29. Kidson GV (1966) Electrochem Tech 4:193

    CAS  Google Scholar 

  30. Frank W (1989) Defect Diffus Forum 66–69:387

    Google Scholar 

  31. Forlerer de Svarch E, Rodriguez C (1991) J Nucl Mater 185:17

    Google Scholar 

  32. Rodriguez C, Forlerer de Svarch E (1992) J Nucl Mater 187:97

    Article  CAS  Google Scholar 

  33. Perez RA, Dyment F, Matzke HJ, Linker G, Dhers H (1994) J Nucl Mater 217:48

    Article  CAS  Google Scholar 

  34. Dyment F, Behar M, Dhers H, Grande PL, Savino E, Zawislak FC (1990) Appl Phys A A51:29

    Article  CAS  Google Scholar 

  35. Hood GM, Schultz RJ (1974) Acta Metall 22:459

    Article  CAS  Google Scholar 

  36. Hood GM (1985) J Nucl Mater 135:292

    Article  CAS  Google Scholar 

  37. Hood GM, Zou H, Schultz RJ, Bromley EH, Jackman JA (1994) J Nucl Mater 217:229

    Article  CAS  Google Scholar 

  38. Hood GM (1993) Defect Diffus Forum 95–98:755

    Article  Google Scholar 

  39. Nakajima H, Hood GM, Schultz RJ (1998) Philos Mag B 58:319

    Article  Google Scholar 

  40. Thiehsen KE, Kassner ME, Pollard J, Hiatt DR, Bristow BM (1993) Metall Mater Trans A 24(8):1819

    Article  Google Scholar 

  41. Abson DJ, Jonas JJ (1972) J Nucl Mater 42:73

    Article  CAS  Google Scholar 

  42. Kassner ME, Pérez-Prado MT (2000) Prog Mater Sci 45:1

    Article  CAS  Google Scholar 

  43. Loge RE, Signorelli JW, Chastel YB, Perrin MY, Levensohn RA (2000) Acta Mater 48:3917

    Article  CAS  Google Scholar 

  44. Fidleris V (1975) Atom Energy Rev 13:51

    Google Scholar 

  45. Franklin DG, Lucas GE, Bement AL (1983) Creep of zirconium alloys in nuclear reactors. ASTM, Philadelphia 815

    Google Scholar 

  46. Chakravartty JK, Prasad YVRK, Asundi MK (1991) Metall Trans A 22:829

    Article  Google Scholar 

  47. Kassner ME, McMahon ME (1987) Metall Trans 18(5):835

    Google Scholar 

  48. Kassner ME, Barrabes S (2005) Mater Sci Eng 410–411A:152

    Google Scholar 

  49. Kassner ME (1989) Metall Mater Trans A 20(10):2001

    Article  Google Scholar 

  50. Kassner ME, McQueen HJ, Pollard J, Evangelista E, Cerri E (1994) Scr Metall Mater 31(10):1331

    Article  CAS  Google Scholar 

  51. Kassner ME, Wang MZ, Perez-Prado MT, Alhajeri S (2002) Metall Mater Trans 33A:3145

    Article  CAS  Google Scholar 

  52. Kassner ME, Nguyen NQ, Henshall GA, McQueen HJ (1991) Mater Sci Eng A 132:97

    Article  Google Scholar 

  53. Honeycombe RWK (1984) The plastic deformation of metals. Edward Arnold Publishers Ltd., London, p 116

    Google Scholar 

  54. Lebensohn RA, Sánchez PV, Pochettino AA (1994) Scr Metall Mater 30:481

    Article  CAS  Google Scholar 

  55. Jonas JJ, Luton MJ (1978) Advances in deformation processing. Plenum, New York, p 215

    Book  Google Scholar 

  56. McQueen HJ, Evangelista E, Jin N, Kassner ME (1991) Metall Mater Trans A 26(7):1757

    Article  Google Scholar 

  57. McQueen HJ, Blum W, Straub S, Kassner ME (1993) Scripta Metall et Mater 28(10):1299

    Article  CAS  Google Scholar 

  58. Keeler JH, Hibbard WR, Decker BF (1953) J Met 197:932

    Google Scholar 

  59. Morris PR, Heckler AJ (1969) Trans AIME 245:1877

    CAS  Google Scholar 

  60. Reid I (1970) Can Metall Q 9:345

    Article  CAS  Google Scholar 

  61. Philippe MJ (1994) Mater Sci Forum 157–162:1337

    Article  Google Scholar 

  62. Wang YN, Huang JC (2003) Mat Chem Phys 8:11

    Article  Google Scholar 

  63. Murty KL, Charit I (2006) Prog Nucl Energy 48:325

    Article  CAS  Google Scholar 

  64. Tenckhoff E (1988) Deformation mechanisms, texture, and anisotropy in zirconium and zircaloy. ASTM Special Technical Publication (STP 966)

  65. Zhu KY, Chaubet D (2005) Acta Mater 53:5131

    Article  CAS  Google Scholar 

  66. Sakai T, Miura H (2012) Mater Sci Forum 706–709:1829

    Article  Google Scholar 

  67. Sakai T, Belyakov A, Miura H (2008) Metall Mater Trans A 39A:2206

    Article  CAS  Google Scholar 

  68. Choi WS, Ryoo HS, Hwang SK, Kim MH, Kwun KI, Chae SW (2002) Metall Mater Trans 33A:973

    CAS  Google Scholar 

  69. Yu SH, Chun YB, Cao WQ, Kim MH, Chae SW, Kwun SI, Shin DH, Hwang SK (2005) Met Mater Int 11:101

    Article  Google Scholar 

  70. Cabibbo M, Blum W, Evangelista E, Kassner ME, Meyers MA (2008) Metall Mater Trans A 39(1):181

    Article  Google Scholar 

  71. Rogachev S, Nikulin S, Dorbatkin S, Terentev V, Kopylov M (2011) Tech Mater Issue 12:3

    Google Scholar 

  72. Pérez-Prado MT, Zhilyaev AP (2009) Phys Rev Lett 102:175504

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Dept. of Energy National Spent Nuclear Fuel Program via Lawrence Livermore National Laboratory under contract W-7405-ENG-48. MTPP is thankful to the Spanish Ministry of Science and Technology (MCYT) and the Spanish Ministry of Science and Education (MAT2005-24523-E and MAT 2005560M139). The authors wish to additionally acknowledge the National Science Foundation (DMR 0501605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Kassner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassner, M.E., Perez Prado, M.T., Hayes, T.A. et al. Elevated temperature deformation of Zr to large strains. J Mater Sci 48, 4492–4500 (2013). https://doi.org/10.1007/s10853-012-7060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7060-4

Keywords

Navigation