Skip to main content
Log in

Dynamic Recrystallization in Zircaloy-2

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Presented here is the evolution of dynamic recrystallization (DRX) with strain in Zircaloy-2 deformed at 800 °C and 10–1 s−1. The flow stress showed a peak followed by softening to steady state. Specimens were deformed to predetermined strains and their microstructure was characterized using electron back scatter diffraction. DRX grains were identified using the criteria of grain orientation spread. The grain size decreased with strain up to a strain of 0.6, beyond which grain size distribution remained very similar. From grain reference orientation deviation and kernel average misorientation maps, it was seen that grain boundaries move into regions of higher dislocation density, suggesting that during hot deformation, Zircaloy-2 underwent discontinuous dynamic recrystallization. Compared to hot deformed Zr, it was observed that the final grain size of Zircaloy-2 was smaller. The final texture showed the basal poles to be aligned nearly parallel to the compression axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

taken from Ref. [39]

Similar content being viewed by others

References

  1. Mani K K V, Sahoo SK, Samajdar I, Neogy S, Tewari R, Srivastava D, Dey GK, Das GH, Saibaba N, and Banarjee S, J Nuclear Mater 383 (2008) 78.

    Article  Google Scholar 

  2. Bailey J E, and Hirsch P B, Proc R Soc Lond A 267 (1962) 11.

    Article  CAS  Google Scholar 

  3. Luton M J, and Sellars C M, Acta Metall 17 (1969) 1033.

    Article  CAS  Google Scholar 

  4. Sakai T, and Jonas J J, Acta Metall 32 (1984) 189.

    Article  CAS  Google Scholar 

  5. Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, and Rollett A D, Mater Sci Eng A 238 (1997) 219.

    Article  Google Scholar 

  6. McQueen H J, Mater Sci Eng A 387-389 (2004) 203.

    Article  Google Scholar 

  7. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, Elsevier (2004).

  8. Sakai T, Belyakov A, Kaibyshev R, Miura H, and Jonas J J, Progress Mater Sci 60 (2014) 130.

    Article  CAS  Google Scholar 

  9. Huang K, and Logé R E, Mater Des 111 (2016) 548.

    Article  CAS  Google Scholar 

  10. McQueen H J, and Bourell D L, J Mater Shaping Technol 5 (1988) 163.

    Article  Google Scholar 

  11. Wusatowska-Sarnek A M, Miura H, and Sakai T, Mater Sci Eng A 323 (2002) 177.

    Article  Google Scholar 

  12. Behera A N, Kapoor R, Paul B, and Chakravartty J K, Mater Charact 126 (2017) 135.

    Article  CAS  Google Scholar 

  13. Sarkar A, Chandanshive S A, Thota M K, and Kapoor R, J Alloys Compd 703 (2017) 56.

    Article  CAS  Google Scholar 

  14. Belyakov A, Miura H, and Sakai T, Mater Sci Eng A 255 (1998) 139.

    Article  Google Scholar 

  15. Zurob H S, Bréchet Y, and Dunlop J, Acta Materialia 54 (2006) 3983.

    Article  CAS  Google Scholar 

  16. Gourdet S, and Montheillet F, Mater Sci Eng A 283 (2000) 274.

    Article  Google Scholar 

  17. Yanushkevich Z, Belyakov A, and Kaibyshev R, Acta Materialia 82 (2015) 244.

    Article  CAS  Google Scholar 

  18. Abedi H R, Zarei Hanzaki A, Liu Z, Xin R, Haghdadi N, and Hodgson P D, Mater Des 114 (2017) 55.

    Article  CAS  Google Scholar 

  19. Wang J T, Zhang Y, and Liu J Q, Mater Sci Forum 584-586 (2008) 929.

    Article  Google Scholar 

  20. Kawasaki M, Horita Z, and Langdon T G, Mater Sci Eng A 524 (2009) 143.

    Article  Google Scholar 

  21. Kapoor R, Sarkar A, Yogi R, Shekhawat S K, Samajdar I, and Chakravartty J K, Mater Sci Eng A 560 (2013) 404.

    Article  CAS  Google Scholar 

  22. Huang Y, and Prangnell P B, Scripta Materialia 56 (2007) 333.

    Article  CAS  Google Scholar 

  23. Nikulin I, Motohashi Y, and Kaibyshev R, Mater Sci Forum 584-586 (2008) 691.

    Article  Google Scholar 

  24. McQueen H J, Knustad O, Ryum N, and Solberg J K, Scripta Metallurgica 19 (1985) 73.

    Article  CAS  Google Scholar 

  25. Solberg J K, McQueen H J, Ryum N, and Nes E, Philos Mag A 60 (1989) 447.

    Article  CAS  Google Scholar 

  26. Kassner M E, and Barrabes S R, Mater Sci Eng A 410-411 (2005) 152.

    Article  Google Scholar 

  27. Chakravartty J K, Prasad Y V R K, and Asundi M K, Metall Trans A 22 (1991) 829.

    Article  Google Scholar 

  28. Chakravartty J K, Banerjee S, Prasad Y V R K, and Asundi M K, J Nuclear Mater 187 (1992), 260.

    Article  CAS  Google Scholar 

  29. Chakravartty J K, Dey G K, Banerjee S, and Prasad Y V R K, J Nuclear Mater 218 (1995) 247.

    Article  CAS  Google Scholar 

  30. Chakravartty J K, Dey G K, Banerjee S, and Prasad Y V R K, Mater Sci Technol 12 (1996) 705.

    Article  CAS  Google Scholar 

  31. Kapoor R, and Chakravartty J K, J Nuclear Mater 306 (2002) 126.

    Article  CAS  Google Scholar 

  32. Chakravartty JK, Kapoor R, and Banerjee S, Zeitschrift fur Metallkunde 96 (2005) 645.

    Article  CAS  Google Scholar 

  33. Chakravartty J K, Kapoor R, Banerjee S, and Prasad Y V R K, J Nuclear Mater 362 (2007) 75.

    Article  CAS  Google Scholar 

  34. Chakravartty J K, Kapoor R, Sarkar A, and Banerjee S, ASTM Spec Tech Publ 1529 (2011) 121.

    Google Scholar 

  35. Sarkar A, and Chakravartty J K, J Nuclear Mater 440 (2013) 136.

    Article  CAS  Google Scholar 

  36. Kassner M E, Perez Prado M T, Hayes T A, Jiang L, Barrabes S R, and Lee I F, J Mater Sci 48 (2013) 4492.

    Article  CAS  Google Scholar 

  37. Blum W, Zhu Q, Merkel R, and McQueen H J, Mater Sci Eng A 205 (1996) 23.

    Article  Google Scholar 

  38. Chauvy C, Barberis P, and Montheillet F, Mater Sci Eng A 431 (2006) 59.

    Article  Google Scholar 

  39. Kapoor R, Bharat Reddy G, and Sarkar A, Mater Sci Eng A 718 (2018) 104.

    Article  CAS  Google Scholar 

  40. Poliak EI, and Jonas JJ, Acta Materialia 44 (1996) 127.

    Article  CAS  Google Scholar 

  41. Sastry DH, Luton M J, and Jonas J J, Philos Mag 30 (1974) 115.

    Article  CAS  Google Scholar 

  42. Ueki M, Horie S, and Nakamura T, Mater Sci Technol 3 (1987) 329.

    Article  CAS  Google Scholar 

  43. Cheong S W, and Weiland H, Mater Sci Forum 558-559 (2007) 153.

    Article  Google Scholar 

  44. Chaudhuri A, Behera A N, Kapoor R, Sarkar A, Chakravartty J K, and Suwas S, IOP Conf Ser Mater Sci Eng 82 (2015) 012088.

  45. Hadadzadeh A, Mokdad F, Wells M A, and Chen D L, Mater Sci Eng A 709 (2018) 285.

    Article  CAS  Google Scholar 

  46. Bellier S P, and Doherty R D, Acta Metallurgica 25 (1977) 521.

    Article  CAS  Google Scholar 

  47. Viswanathan R, and Bauer C L, Acta Metallurgica 21 (1973) 1099.

    Article  CAS  Google Scholar 

  48. Cram D G, Zurob H S, Brechet Y J M, and Hutchinson C R, Acta Materialia 57 (2009) 5218.

    Article  CAS  Google Scholar 

  49. Birch R, and Britton T B, J Appl Crystallogr 55 (2022).

Download references

Acknowledgements

Authors thank CoEST IIT-Bombay for use of Gleeble thermo-mechanical simulator in carrying out the high temperature compression tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kapoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, R., Bharat Reddy, G. & Sarkar, A. Dynamic Recrystallization in Zircaloy-2. Trans Indian Inst Met 75, 975–982 (2022). https://doi.org/10.1007/s12666-022-02535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02535-3

Keywords

Navigation