Skip to main content

Flow Softening at Elevated Temperatures

  • Chapter
Advances in Deformation Processing

Abstract

The principal categories of flow softening that occur at high temperatures are examined in turn. Two of these, substructure coarsening by dynamic recovery and dislocation elimination through the initiation of dynamic recrystallization, are types of work softening in that they involve reductions in dislocation density. Two further types, that of geometric softening and of adiabatic heating, do not involve the reversal of any strengthening mechanisms. The remainder of the flow-softening processes are associated with the rearrangement of second phases, e.g., spheroidization of lamellar structures, coarsening of precipitates, break-up of Widmanstatten and martensitic substructures, and phase redistribution during superplastic flow.

The practical implications of flow softening are discussed both during forming and under service conditions. It is shown that flow softening will lead to instabilities on compressive loading, and a simple construction is described which can be used to predict the onset and termination of the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Immarigeon, J.P. and Jonas, J.J., “The Deformation of ARMCO Iron and Silicon Steel in the Vicinity of the Curie Temperature”, Acta Met., 22 (1974), 1235–47.

    Article  Google Scholar 

  2. Luton, M.J. and Jonas, J.J., “Solute Strengthening at High Temperatures in Zirconium-Tin Alloys”, Can. Met. Quart., 11 (1972), 79–90.

    Google Scholar 

  3. Hardwick, D. and Tegart, W.J.McG., “Structural Changes During the Deformation of Copper, Aluminum and Nickel at High Temperatures and High Strain Rates”, J. Inst. Metals, 90 (1961-62), 17–20.

    Google Scholar 

  4. Immarigeon, J.P., “High Temperature Deformation of ARMCO Iron and Silicon Steel in the Vicinity of the Curie Temperature”, unpublished Ph.D. dissertation, McGill University, 1974.

    Google Scholar 

  5. Jonas, J.J., Sellars, C M. and Tegart, W.J.McG., “Strength and Structure Under Hot Working Conditions”, Met. Rev., 14, No. 130 (1969), 1–24 in Metals Mater., 3 (1969), 33.

    Google Scholar 

  6. McQueen, H.J. and Jonas, J.J., “Recovery and Recrystallization During High Temperature Deformation”, in Plastic Deformation of Materials, R.J. Arsenault, ed., New York: Academic Press (1975), 393–493.

    Google Scholar 

  7. Immarigeon, J.P. and Jonas, J.J., “Flow Stress and Substructural Change During the Transient Deformation of ARMCO Iron and Silicon Steel”, Acta Met., 19 (1971), 1053–61.

    Article  Google Scholar 

  8. Luton, M.J. and Sellars, CM., “Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation”, Acta Met., 17 (1969), 1033–43.

    Article  Google Scholar 

  9. Rossard, C. and Blain, P., “Premiers résultats de recherches sur la déformation des aciers ä chaud mise au point d’un appareillage spécialement étudié”, Rev. Metall. (Paris), 55 (1958), 573–81.

    Google Scholar 

  10. Schmid, E., “Mechanical Strength and Plasticity of Metal Crystals”, Metallwirtschaft, 7 (1928), 1011–18. (in German)

    Google Scholar 

  11. Boas, W. and Schmitd, E., “Uber die Dehnung von Cadmiumkristallen”, Z. Phys., 54 (1929), 16–34.

    Article  ADS  Google Scholar 

  12. Luton, M.J. and Holt, R., McGill University, 1974, unpublished research.

    Google Scholar 

  13. Hockett, J.E., “On Relating the Flow Stress of Aluminum to Strain, Strain Rate, and Temperature”, Trans. Met. Soc. AIME, 239 (1967), 969–76.

    Google Scholar 

  14. Samanta, S.K., “Dynamic Deformation of Aluminum and Copper at Elevated Temperatures”, J. Mech. Phys. Solids, 19 (1971), 117–35.

    Article  ADS  Google Scholar 

  15. Robbins, J.L., Shepard, O.G. and Sherby, O.D., “Torsional Ductility and Strength of Iron-Carbon Alloys at Elevated Temperature”, ASM Trans. Quart., 60 (1967), 205–16.

    Google Scholar 

  16. Chojnowski, E.A. and Tegart, W.J.McG., “Accelerated Spheroidization of Pearlite”, Metal Sci. J., 2 (1968), 14–18.

    Article  Google Scholar 

  17. Petkovic, R.A., “Recovery and Recrystallization of FCC Metals After High Temperature Deformation”, unpublished Ph.D. dissertation, McGill University, 1975.

    Google Scholar 

  18. Petkovic, R.A., Luton, M.J. and Jonas, J.J., “Recovery and Recrystallization of Carbon Steel Between Intervals of Hot Working”, Can. Met. Quart., 14 (1975), in press.

    Google Scholar 

  19. LeBon, A., Rofes-Vernis, J. and Rossard, C, “Recristallisation et précipitation provoquées par la déformation à chaud: cas d’un acier de construction sondable au niobium”, Mem. Soc. Rev. Metall., 70 (1973), 577–88.

    Google Scholar 

  20. Sastry, D.H., Luton, M.J. and Jonas, J.J., McGill University, 1974, unpublished research.

    Google Scholar 

  21. Abson, D.J. and Jonas, J.J., McGill University, 1971, unpublished research.

    Google Scholar 

  22. Luton, M.J. and Jonas, J.J., McGill University, 1974, unpublished reserach.

    Google Scholar 

  23. Dunlop, G.L. and Taplin, D.M.R., “The Tensile Properties of a Superplastic Aluminum Bronze”, J. Mater. Sci., 7 (1972), 84–92.

    Article  ADS  Google Scholar 

  24. Chandra, T., “Flow and Fracture of Strain Rate Sensitive Copper Alloys”, unpublished Ph.D. dissertation, University of Waterloo, 1975.

    Google Scholar 

  25. Sagat, S., “The Deformation and Fracture of Superplastic Microsuplex Alloys”, unpublished Ph.D. dissertation, University of Waterloo, 1974.

    Google Scholar 

  26. Considére, A., “Memoire sur lTemploi du fer et de l1acier dans les construction”, Ann. Ponts Chausses, 6th Ser. 9, pt. 1 (1885), 574–775.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Jonas, J.J., Luton, M.J. (1978). Flow Softening at Elevated Temperatures. In: Burke, J.J., Weiss, V. (eds) Advances in Deformation Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4024-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4024-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4026-3

  • Online ISBN: 978-1-4613-4024-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics