Skip to main content
Log in

Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Deformation mechanism maps are a very useful tool for displaying deformation mechanisms as a function of the three fundamental parameters of high temperature flow: the applied stress, the testing temperature and the grain size of the material. These maps are used extensively in the field of high temperature creep but there has been very little use with ultrafine-grained (UFG) metals. This article reviews the principles of deformation mechanism maps, presents examples of maps for some representative metals processed by equal-channel angular pressing or high-pressure torsion and then describes a simple procedure for constructing maps for UFG materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kassner ME, Perez-Prado MT (2000) Prog Mater Sci 45:1

    Article  CAS  Google Scholar 

  2. Langdon TG (2000) Mater Sci Eng A283:266

    CAS  Google Scholar 

  3. Langdon TG (2002) Metall Mater Trans 33A:249

    Article  CAS  Google Scholar 

  4. Langdon TG (2005) Z Metallkd 96:522

    CAS  Google Scholar 

  5. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  6. Weertman J, Weertman JR (1965) In: Cahn RW (ed) Physical metallurgy. North-Holland, Amsterdam, p 793

    Google Scholar 

  7. Weertman J (1968) Trans Am Soc Met 61:681

    CAS  Google Scholar 

  8. Ashby MF (1971) Acta Metall 20:887

    Google Scholar 

  9. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  10. Mohamed FA, Langdon TG (1974) Metall Trans 5:2339

    Article  CAS  Google Scholar 

  11. Langdon TG, Mohamed FA (1978) Mater Sci Eng 32:103

    Article  Google Scholar 

  12. Langdon TG, Mohamed FA (1978) J Mater Sci 13:1282. doi:10.1007/BF00544735

    Article  CAS  Google Scholar 

  13. Sklenička V, Dvořák J, Svoboda M (2004) Mater Sci Eng A387–389:696

    Google Scholar 

  14. Xu C, Langdon TG (2005) Mater Sci Eng A410–411:398

    Google Scholar 

  15. Sklenička V, Dvořák J, Král P, Stonawská Z, Svoboda M (2005) Mater Sci Eng A410–411:408

    Google Scholar 

  16. Li YJ, Valiev R, Blum W (2005) Mater Sci Eng A410–411:451

    Google Scholar 

  17. Xu C, Langdon TG (2006) Mater Sci Forum 503–504:77

    Article  Google Scholar 

  18. Blum W, Li YJ (2007) Scripta Mater 57:429

    Article  CAS  Google Scholar 

  19. Kawasaki M, Beyerlein IJ, Vogel SC, Langdon TG (2008) Acta Mater 56:2307

    Article  CAS  Google Scholar 

  20. Xu C, Kawasaki M, Langdon TG (2009) Int J Mater Res 100:750

    Article  CAS  Google Scholar 

  21. Sklenička V, Král P, Svoboda M, Saxl I (2009) Int J Mater Res 100:762

    Article  Google Scholar 

  22. Kawasaki M, Sklenička V, Langdon TG (2010) J Mater Sci 45:271 10.1007/s10853-009-3975-9

    Article  CAS  Google Scholar 

  23. Kawasaki M, Langdon TG (2010) Mater Sci Forum 638–642:1965

    Article  Google Scholar 

  24. Sklenička V, Král P, Dvořák J, Kvapilová M, Kawasaki M, Langdon TG (2011) Mater Sci Forum 667–669:897

    Google Scholar 

  25. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi:10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  26. Kawasaki M, Lee S, Langdon TG (2009) Scripta Mater 61:963

    Article  CAS  Google Scholar 

  27. Ma Y, Langdon TG (1994) Metall Mater Trans 25A:2309

    Article  CAS  Google Scholar 

  28. Ishikawa H, Mohamed FA, Langdon TG (1975) Phil Mag 32:1269

    Article  CAS  Google Scholar 

  29. Mohamed FA, Langdon TG (1976) Scripta Metall 10:759

    Article  CAS  Google Scholar 

  30. Langdon TG, Mohamed FA (1977) Scripta Metall 11:575

    Article  CAS  Google Scholar 

  31. Mohamed FA, Langdon TG (1975) Phil Mag 32:697

    Article  CAS  Google Scholar 

  32. Nabarro FRN (1948) In: Report of a conference on strength of solids. The Physical Society, London, p 75

  33. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  34. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  35. Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, p 255

  36. Kawasaki M, de Mendes A, Sordi VL, Ferrante M, Langdon TG (2011) J Mater Sci 46:155. doi:10.1007/s10853-010-4889-2

    Article  CAS  Google Scholar 

  37. Kawasaki M, Langdon TG (2011) Mater Sci Eng A528:6140

    Google Scholar 

  38. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919

    Article  CAS  Google Scholar 

  39. Higashi K, Mabuchi M, Langdon TG (1996) ISIJ Int 6:1423

    Article  Google Scholar 

  40. Kawasaki M, Langdon TG (2008) Mater Trans 49:84

    Article  CAS  Google Scholar 

  41. Langdon TG (1994) Acta Metall Mater 42:2437

    Article  CAS  Google Scholar 

  42. Mohamed FA, Shei SA, Langdon TG (1975) Acta Metall 23:1443

    Google Scholar 

  43. Kawasaki M, Sklenička V, Langdon TG (2011) Kovove Mater 49:75

    CAS  Google Scholar 

  44. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  45. Mohamed FA (2011) Mater Sci Eng A528:1431

    CAS  Google Scholar 

  46. Wang N, Wang Z, Aust KT, Erb U (1995) Acta Metall Mater 43:519

    Article  CAS  Google Scholar 

  47. Mohamed FA, Chauhan M (2006) Metall Mater Trans 37A:3555

    Article  CAS  Google Scholar 

  48. Mohamed FA, Yang H (2010) Metall Mater Trans 41A:823

    Article  CAS  Google Scholar 

  49. Langdon TG (1982) Metall Trans 13A:689

    Google Scholar 

  50. Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) Metall Mater Trans 32A:707

    CAS  Google Scholar 

  51. Kawasaki M, Figueiredo RB, Xu C, Langdon TG (2007) Metall Mater Trans 38A:1891

    Article  CAS  Google Scholar 

  52. Kawasaki M, Langdon TG (2012) Mater Trans 53:87

    Article  CAS  Google Scholar 

  53. Chaudhury PK, Mohamed FA (1988) Acta Metall 36:1099

    Article  CAS  Google Scholar 

  54. Chaudhury PK, Sivaramakrishnan V, Mohamed FA (1988) Metall Trans 19A:2741

    CAS  Google Scholar 

  55. Yan S, Earthman JC, Mohamed FA (1994) Phil Mag A 69:1017

    Article  CAS  Google Scholar 

  56. Falk LKL, Howell PR, Dunlop GL, Langdon TG (1986) Acta Metall 34:1203

    Article  CAS  Google Scholar 

  57. Valiev RZ, Langdon TG (1993) Acta Metall Mater 41:949

    Article  CAS  Google Scholar 

  58. Xun Y, Mohamed FA (2003) Phil Mag 83:2247

    Article  CAS  Google Scholar 

  59. Kawasaki M, Balasubramanian N, Langdon TG (2011) Mater Sci Eng A528:6624

    Google Scholar 

  60. Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG (1997) Scripta Mater 37:1945

    Article  CAS  Google Scholar 

  61. Islamgaliev RK, Yunusova NF, Valiev RZ, Tsenev NK, Perevezentsev VN, Langdon TG (2003) Scripta Mater 49:467

    Article  CAS  Google Scholar 

  62. Musin F, Kaibyshev R, Motohashi Y, Itoh G (2004) Metall Mater Trans A 35A:2383

    Article  CAS  Google Scholar 

  63. Park KT, Hwang DY, Lee YK, Kim YK, Shin DH (2003) Mater Sci Eng A341:273

    CAS  Google Scholar 

  64. Nikulin I, Kaibyshev R, Sakai T (2005) Mater Sci Eng A407:62

    CAS  Google Scholar 

  65. Komura S, Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Mater Sci Eng A297:111

    CAS  Google Scholar 

  66. Lee S, Utsunomiya A, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 50:553

    Article  Google Scholar 

  67. Figueiredo RB, Langdon TG (2008) J Mater Sci 43:7366. doi:10.1007/s10853-008-2846-0

    Article  CAS  Google Scholar 

  68. Miyahara Y, Horita Z, Langdon TG (2006) Mater Sci Eng A420:240

    CAS  Google Scholar 

  69. Mabuchi M, Iwasaki H, Yanase K, Higashi K (1997) Scripta Mater 36:681

    Article  CAS  Google Scholar 

  70. Mabuchi M, Ameyama K, Iwasaki H, Higashi K (1999) Acta Mater 47:2047

    Article  CAS  Google Scholar 

  71. Chuvil’deev VN, Nieh TG, Gryaznov MYu, Kopylov VI, Sysoev AN (2008) J Alloys Compd 378:253

  72. Watanabe H, Mukai T, Ishikawa K, Higashi K (2002) Scripta Mater 46:851

    Article  CAS  Google Scholar 

  73. Chuvil’deev VN, Nieh TG, Gryaznov MYu, Sysoev AN, Kopylov VI (2004) Scripta Mater 50:861

  74. Figueiredo RB, Langdon TG (2006) Mater Sci Eng A430:151

    CAS  Google Scholar 

  75. Figueiredo RB, Langdon TG (2008) Adv Eng Mater 10:37

    Article  CAS  Google Scholar 

  76. Miyahara Y, Matsubara K, Horita Z, Langdon TG (2005) Metall Mater Trans 36A:1705

    Article  CAS  Google Scholar 

  77. Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3073

    Article  CAS  Google Scholar 

  78. Furui M, Xu C, Aida T, Inoue M, Anada H, Langdon TG (2005) Mater Sci Eng A410–411:439

    Google Scholar 

  79. Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083

    Article  CAS  Google Scholar 

  80. Vagarali SS, Langdon TG (1982) Acta Metall 30:1157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, M., Langdon, T.G. Using deformation mechanism maps to depict flow processes in superplastic ultrafine-grained materials. J Mater Sci 47, 7726–7734 (2012). https://doi.org/10.1007/s10853-012-6487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6487-y

Keywords

Navigation