Skip to main content
Log in

Superplastic behavior and microstructure evolution in a commercial Al-Mg-Sc alloy subjected to intense plastic straining

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A commercial Al-6 pct Mg-0.3 pct Sc-0.3 pct Mn alloy subjected to equal-channel angular extrusion (ECAE) at 325 °C to a total strain of about 16 resulted in an average grain size of about 1 µm. Superplastic properties and microstructural evolution of the alloy were studied in tension at strain rates ranging from 1.4 × 10−5 to 1.4 s−1 in the temperature interval 250 °C to 500 °C. It was shown that this alloy exhibited superior superplastic properties in the wide temperature range 250 °C to 500 °C at strain rates higher than 10−2 s−1. The highest elongation to failure of 2000 pct was attained at a temperature of 450 °C and an initial strain rate of 5.6 × 10−2 s−1 with the corresponding strain rate sensitivity coefficient of 0.46. An increase in temperature from 250 °C to 500 °C resulted in a shift of the optimal strain rate for superplasticity, at which highest ductility appeared, to higher strain rates. Superior superplastic properties of the commercial Al-Mg-Sc alloy are attributed to high stability of ultrafine grain structure under static annealing and superplastic deformation at T ≤ 450 °C. Two different fracture mechanisms were revealed. At temperatures higher than 300 °C or strain rates less than 10−1 s−1, failure took place in a brittle manner almost without necking, and cavitation played a major role in the failure. In contrast, at low temperatures or high strain rates, fracture occurred in a ductile manner by localized necking. The results suggest that the development of ultrafine-grained structure in the commercial Al-Mg-Sc alloy enables superplastic deformation at high strain rates and low temperatures, making the process of superplastic forming commercially attractive for the fabrication of high-volume components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YA. Filatov, V.I. Yelagin, and V.V. Zakharov: Mater. Sci. Eng., 2000, vol. 280A, pp. 97–101.

    Google Scholar 

  2. R.R. Sawtell and C.L. Jensen: Metall. Trans. A, 1990, vol. 21A, pp. 421–30.

    CAS  Google Scholar 

  3. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  4. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon: Acta Mater., 2001, vol. 49, pp. 3829–38.

    Article  CAS  Google Scholar 

  5. S. Lee, A Utsunomiya, H. Akamatsu, K. Naishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 553–64.

    Article  CAS  Google Scholar 

  6. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–16.

    Article  CAS  Google Scholar 

  7. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, pp. 2789–00.

    Article  CAS  Google Scholar 

  8. T.R. McNelley, E.-W. Lee, and M.E. Mills: Metall. Trans. A, 1986, vol. 17A, pp. 1035–41.

    CAS  Google Scholar 

  9. S.J. Hales and T.R. McNelley: Acta Metall., 1988, vol. 36, pp. 1229–39.

    Article  CAS  Google Scholar 

  10. S.J. Hales, T.R. McNelley, and H.J. McQueen: Metall. Trans., 1991, vol. 22A, pp. 1037–47.

    CAS  Google Scholar 

  11. E.W. Lee and T.R. McNelley: Mater. Sci. Eng., 1987, vol. 93, pp. 45–55.

    Article  CAS  Google Scholar 

  12. Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Mater. Sci. Technol., 2000, vol. 16, pp. 1239–45.

    Article  CAS  Google Scholar 

  13. J. Pilling and N. Ridley: Superplasticity in Crystaline Solids, The Institute of Metals, London, 1989, p. 214.

    Google Scholar 

  14. O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, 1992, p. 316.

    Google Scholar 

  15. T.G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, New York, NY, 1996, p. 210.

    Google Scholar 

  16. R. Kaibyshev, F. Musin, D.R. Lesuer, and T.G. Nieh: Mater. Sci. Eng., 2003, vol. A342, pp. 169–77.

    CAS  Google Scholar 

  17. J.W. Edington, K.N. Melton, and C.P. Cutler: Progr. Mater. Sci., 1976, vol. 21, pp. 161–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musin, F., Kaibyshev, R., Motohashi, Y. et al. Superplastic behavior and microstructure evolution in a commercial Al-Mg-Sc alloy subjected to intense plastic straining. Metall Mater Trans A 35, 2383–2392 (2004). https://doi.org/10.1007/s11661-006-0218-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0218-4

Keywords

Navigation