Skip to main content
Log in

Interpretation of the creep behavior of nanocrystalline Ni in terms of dislocation accommodated boundary sliding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep behavior and deformation-induced grain growth in electrodeposited (ED) nanocrystalline (nc) Ni with a grain size of about 20 nm were studied over more than five orders of magnitude of strain rate (10−9 s−1 to 2×10−4 s−1) at 393 K (0.23 T m, where T mis the melting point). In addition, the activation energy for the creep in ED nc-Ni was determined by using the temperature change procedure. The results show that the creep behavior of the material is characterized by (a) a stress exponent that increases continuously from about 4.5 to about 30 with increasing applied stress; (b) an apparent activation energy for creep in the range of 126 to 141 kJ/mol; (c) an activation volume of about 20 b 3 where b is the Burgers vector; and (d) a grain size that upon loading, grows, attaining a constant value once steady-state creep is approached. The mechanical characteristics cannot be accounted for by current deformation processes. Analysis of the creep data along with consideration of available information leads to the suggestion that the creep behavior of nc-Ni arises from a deformation process that is based on the concept of dislocation-accommodated boundary sliding. By quantitatively developing this concept, a rate-controlling deformation process is formulated. It is shown that the predictions of this process, are in good agreement with experimental results and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Progr. Mater. Sci., 1989 vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  2. H. Gleiter: Acta Mater., 2000 vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  3. C.C. Koch and C. Suryanarayana: in Microstructure and Properties of Materials, J.C.M. Li, ed., World Scientific Publishing, Singapore, 2000, pp. 360–403.

    Google Scholar 

  4. F.A. Mohamed and Y. Li: Mater. Sci. Eng., A., 2001 vol. 298, pp. 1–15.

    Article  Google Scholar 

  5. D.L. Wang, Q.P. Kong, and J.P. Shui: Scripta Metall. Mater., 1994 vol. 31, pp. 47–51.

    Article  CAS  Google Scholar 

  6. J. Deng, D.L. Wang, Q.P. Kong, and J.P. Shui: Scripta Metall. Mater., 1995 vol. 32, pp. 349–52.

    Article  CAS  Google Scholar 

  7. M.L. Xiao and Q.P. Kong: Scripta Mater., 1997 vol. 36, pp. 299–303.

    Article  CAS  Google Scholar 

  8. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Mater. Sci. Eng., A., 1997, vol. 237, pp. 150–58.

    Article  Google Scholar 

  9. H. Hahn and R.S. Averback: J. Am. Ceram. Soc., 1991 vol. 74, pp. 2918–21.

    Article  CAS  Google Scholar 

  10. W.M. Yin, S.H. Whang, R.A. Mirshams, and C.H. Xiao: Mater. Sci. Eng., A., 2001 vol. 301, pp. 18–22.

    Article  Google Scholar 

  11. W.M. Yin, S.H. Whang, and R.A. Mirshams: Acta Mater., 2005 vol. 53, pp. 383–92.

    Article  CAS  Google Scholar 

  12. R.S. Kottada and A.H. Chokshi: Scripta Mater., 2005 vol. 53. pp. 887–92.

    Article  CAS  Google Scholar 

  13. K.L. Murty, F.A. Mohamed, and J.E. Dorn: Acta Metall., 1972 vol. 20, pp. 1009–18.

    Article  CAS  Google Scholar 

  14. P.K. Chaudhury and F.A. Mohamed: Acta Metall., 1988 vol. 36, pp. 1099–110.

    Article  CAS  Google Scholar 

  15. Y. Li and F.A. Mohamed: Acta Metall. 1997 vol. 45, pp. 4775–85.

    CAS  Google Scholar 

  16. D.M. Schwartz, J.B. Mitchell, and J.E. Dorn: Acta Metall., 1967 vol. 15, pp. 485–90.

    Article  CAS  Google Scholar 

  17. T.R. Haasz, K.T. Aust, G. Palumbo, A.M. El-Sherik, and U. Erb: Scripta Metall. Mater., 1995 vol. 32, pp. 423–26.

    Article  CAS  Google Scholar 

  18. Y.M. Wang, S. Chang, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza: Scripta Mater., 2004 vol. 51, pp. 1023–28.

    Article  CAS  Google Scholar 

  19. S.A. Shei and T.G. Langdon: Acta Metall., 1978 vol. 26, pp. 639–46.

    Article  CAS  Google Scholar 

  20. S. Yan: Ph.D. Thesis, University of California. Irvine, CA, 1998.

  21. F.A. Mohamed and T.G. Langdon: Acta Metall., 1975 vol. 23, pp. 117–24.

    Article  CAS  Google Scholar 

  22. F. Dalla Torre, H. Van Swygenhoven, R. Schäublin, P. Spätig, and M. Victoria: Scripta Mater., 2005 vol. 53, pp. 23–27.

    Article  CAS  Google Scholar 

  23. M. Chauhan and F.A. Mohamed: Mater. Sci. Eng., A., 2006 vol. 427, pp. 7–15.

    Article  CAS  Google Scholar 

  24. H.I.L. Huang, O.D. Sherby, and J.E. Dorn: Trans. AIME, 1956, vol. 206, pp. 1385–88.

    Google Scholar 

  25. J. Asakill: Tracer Diffusion Data for Metals, Alloys, and Simple Oxides Plenum, New York, NY, 1970.

    Google Scholar 

  26. P. Shewman: Trans AIME, 1954 vol. 200, pp. 71–80.

    Google Scholar 

  27. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., 1975, vol. 19, pp. 1–281.

    Article  Google Scholar 

  28. H.P. Kulg and L.E. Alexander: X-ray Diffraction Procedures, John Wiley & Sons, New York, NY, 1974, p. 661.

    Google Scholar 

  29. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria: Acta Mater., 2002 vol. 50, pp. 3957–70.

    Article  CAS  Google Scholar 

  30. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Acta Mater., 2003 vol. 51, pp. 5159–72.

    Article  CAS  Google Scholar 

  31. A. Robertson: Integran Technologies Inc., private communication, 2006,

  32. Y.J. Wei and L. Anand: J. Mech. Phys. Solids, 2004 vol. 52, pp. 2587–616.

    Article  CAS  Google Scholar 

  33. R.J. Asaro, P. Krysl, and D. Kad: Phil. Mag. Lett., 2003, vol. 83, pp. 733–43.

    Article  CAS  Google Scholar 

  34. R.J. Asaro and S. Suresh: Acta Mater., 2005 vol. 53, pp. 3369–82.

    Article  CAS  Google Scholar 

  35. J.E. Bird, A.K. Mukherjee, and J.E. Dorn. Correlations between High-Temperature Creep Behavior and Structure. D.G. Brandon and A. Rosen, eds., Quantitative Relation between Properties and Microstructure. Israel Universities Press, Jurusalem, 1969, p. 255.

    Google Scholar 

  36. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Philos. Mag. A, 2000 vol. 80, pp. 1017–26.

    Article  CAS  Google Scholar 

  37. R.L. Coble: J. Appl. Phys., 1963, vol. 34 pp. 1679–82.

    Article  Google Scholar 

  38. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Acta Metall Mater, 1995, vol. 43, pp. 519–28.

    Article  CAS  Google Scholar 

  39. G. Palumbo, S.J. Thorpe, and K.T. Aust: Scripta Metall. Mater., 1990, vol. 24, pp. 1347–50.

    Article  CAS  Google Scholar 

  40. H. Hahn and K.A. Padmanabhan: Philos. Mag. B., 1997 vol. 76, pp. 559–71.

    Article  CAS  Google Scholar 

  41. H. Van Swygenhoven and P.M. Derlet: Phys. Rev. B., 2001 vol. 64, pp. 224105–1-09-1.

    Article  CAS  Google Scholar 

  42. H. van Swygenhoven and A. Caro: Phys. Rev. B: Condens. Matter Mater. Phys., 1998 vol. 58, pp. 11 and 26–51.

    Google Scholar 

  43. H. Conrad and J. Narayan: Scripta Mater., 2000 vol. 42, pp. 1025–30.

    Article  CAS  Google Scholar 

  44. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 61–73.

    Article  CAS  Google Scholar 

  45. H. Van Swygenhoven: Superplast. Adv. Mater. Sci. Forum, 2003, vol. 3, pp. 447–48.

    Google Scholar 

  46. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Acta Mater. 2003 vol. 51, pp. 387–405.

    Article  CAS  Google Scholar 

  47. D. Farkas, S. Van Petegem, P.M. Derlet, and H. Van Swygenhoven: Acta Mater., 2005, vol. 53, pp. 3115–23.

    Article  CAS  Google Scholar 

  48. Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Science, 2004 vol. 305, pp. 654–57.

    Article  CAS  Google Scholar 

  49. R. Mitra, W.A. Chiou, and J.R. Weertman: J. Mater. Res., 2004 vol. 19, pp. 1029–37.

    Article  CAS  Google Scholar 

  50. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt: Science, 2004 vol. 304, pp. 273–76.

    Article  CAS  Google Scholar 

  51. Y. Xun and F.A. Mohamed: Philos. Mag. A., 2003 vol. 83, pp. 2247–66.

    Article  CAS  Google Scholar 

  52. Y. Xun and F.A. Mohamed: Acta Mater., 2004 vol. 52, pp. 4401–12.

    Article  CAS  Google Scholar 

  53. D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Acta Mater., 2005 vol. 53, pp. 1–40.

    Article  CAS  Google Scholar 

  54. V. Yamakov, E. Saether, D. Philips, and E.H. Glaessgen: Special Session on Nanostructured Materials at the 45th Structures, Structural Dynamics and Materials Conference and Exhibit, Palm Springs, CA. 2004.

  55. H. Ball and M.M. Hutchinson: J. Met. Sci., 1969 vol. 3, pp. 1–7.

    Article  Google Scholar 

  56. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: Phys. Rev. B. 2002 vol. 66, pp. 184112–1-8.

    Article  CAS  Google Scholar 

  57. H. Van Swygenhoven, D. Farkas, and A. Caro; Phys. Rev. B: Condens. Matter Mater. Phys., 2000 vol. 62, pp. 831–38.

    Google Scholar 

  58. R.C. Gifkins: Metall. Trans. A., 1976 vol. 7, pp. 1225–32.

    Article  Google Scholar 

  59. J. Friedel: Dislocations, Pergamon Press. Oxford, United Kingdom, 1964.

    Google Scholar 

  60. T.G. Langdon: Acta Metall. Mater., 1994 vol. 42, pp. 2437–43.

    Article  CAS  Google Scholar 

  61. A.K. Mukherjee: Mater. Sci. Eng., 1971 vol. 8, pp. 83–89.

    Article  CAS  Google Scholar 

  62. N. Balasubramanian and T.G. Langdon: Scripta Mater. 2003, vol. 48, pp. 599–604.

    Article  CAS  Google Scholar 

  63. K. Morita and K. Hiraga: Phil. Mag. Lett., 2001, vol. 81, pp. 311–19.

    Article  CAS  Google Scholar 

  64. T. Chen: Ph.D. Thesis, University of California, Irvine, CA, 2005.

  65. F. Dalla Torre, P. Spätig, R. Schäublin, and M. Victoria: Acta Mater., 2005 vol. 53, pp. 2337–49.

    Article  CAS  Google Scholar 

  66. F.A. Mohamed: Scripta Metall, 1979 vol. 13, pp. 87–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, F.A., Chauhan, M. Interpretation of the creep behavior of nanocrystalline Ni in terms of dislocation accommodated boundary sliding. Metall Mater Trans A 37, 3555–3567 (2006). https://doi.org/10.1007/s11661-006-1050-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1050-6

Keywords

Navigation