Skip to main content
Log in

Phyto-phospholipid complex of catechin in value added herbal drug delivery

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Catechin (an anti-inflammatory, antioxidant, antitumour, and hepatoprotective bioflavonoid) is poorly absorbed across the GIT because it has multiple ring molecules that are too large to be absorbed by simple diffusion. It typically has poor miscibility with oils and other lipids which limit their ability to pass across the lipid rich outer membranes of enterocytes of small intestine. Thus catechin–phospholipid complex were prepared to improve its absorption by imparting an environment of improved lipophilicity. The phospholipid complexes of catechin were prepared with phosphatidylcholine in presence of dichloromethane by conventional solvent evaporation technique. Pharmacosomes thus prepared were evaluated for solubility, drug content, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X ray powder diffraction (XRPD), in vitro dissolution study and in vitro antioxidant activity. Prepared phospholipid complex showed high drug content (99.40%. w/w) and improved lipid solubility (0.79–1.97 mg/mL). FTIR, NMR, DSC and XRPD data confirmed the formation of phospholipid complex. Unlike the free catechin, catechin complex showed a sustained release over the 24 h of study. Catechin-phospholipid complex showed slightly better antioxidant activity than that of catechin at all dose levels. Thus it can be concluded that the phospholipid complex of catechin may be of potential use for improving absorption of catechin across the lipidic biological barriers in gastrointestinal tract. It was concluded that the complexation with phospholipids did not interfere with the biological activities. This herbal drug delivery system can pave the way for large molecules to pass through the lipophilic biological membrane (by the virtue of their amphiphilic nature) and get absorbed into the systemic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kalender, S., Kalender, Y., Ates, A., Yel, M., Olcay, E., Candan, S.: Protective role of antioxidant vitamin E and catechin on idarubicin induced cardiotixicity in rats. Bra. J. Med. Bio. Res. 34, 1379–1387 (2002)

    Google Scholar 

  2. Kid, P., Head, K.: A review of the bioavailability and clinical efficacy of milk thistle phytosome: a Silybin–phosphatidylcholine complex. Alt. Med. Rev. 11, 12–15 (2005)

    Google Scholar 

  3. Reimann, H.J., Lorenz, W., Fisher, M., Meyer, H.J., Schmal, A., Frolich, R.: Histamine & acute haermorrhagic lesions in rat gastric mucosa; prevention of stress ulcer formation by (+)- catechin, an inhibitor of specific histidine decarboxylase in vitro. Inflammation Res. 7(1), 69–73 (1977)

    CAS  Google Scholar 

  4. Rivkind, A.I., Marshood, M., Durst, A.L., Becker, Y.: Cianidanol ([+]–cyanidanol-3) prevents the development of abdominal adhesions in rats. Arch. Surgery. 118(12), 14–17 (1983)

    Article  Google Scholar 

  5. Weyant, M.J., Carothers, A.M., Bertagnolli, M.M., Dannerberg, A.J.: [+]–catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the Min/+ mouse. Cancer Res. 61, 118–125 (2001)

    CAS  Google Scholar 

  6. Takano, F., Tanaka, T., Aoi, J., Yahagi, N., Fushiya, S.: Protective effect of (+) -catechin against 5-fluorouracil induced myelosuppression in mice. Toxicology. 201(1–3), 133–142 (2004). doi:10.1016/j.tox.2004.04.009

    Article  CAS  Google Scholar 

  7. Singal, S.K., Tirkey, N., Chopra, K.: Green tea extract and catechin ameliorate chronic fatigue induced oxidative stress in mice. J. Medicinal Food. 8(1), 47–52 (2005). doi:10.1089/jmf.2005.8.47

    Article  CAS  Google Scholar 

  8. Parvaz, S., Jabassum, H., Rehman, H., Benarjee, B., Athar, M., Raisuddin, S.: Catechin prevents tamoxifen induced oxidative stress and biochemical perturbations in mice. Toxicology. 225(2–3), 109–118 (2006). doi:10.1016/j.tox.2006.05.009

    Article  Google Scholar 

  9. Siegers, C.P., Volpel, M., Scheel, G., Younes, M.: Effect of dithiocarb & catechin against CCl4-alcohol induced liver fibrosis. Agents Actions. 12(5), 743–748 (1982). doi:10.1007/BF01965096

    Article  CAS  Google Scholar 

  10. Varga, M., Buris, L.: Some morphometric evidence of hepatoprotective effects of (+) cyanidanol -3. Pharmacol. Biochem. Behav. 33(3), 523–526 (1989). doi:10.1016/0091-3057(89)90380-8

    Article  CAS  Google Scholar 

  11. Semalty, A., Semalty, M., Rawat, B.S., Singh, D., Rawat, M.S.M.: Pharmacosomes: the lipid based novel drug delivery system. Expert. Opin. Drug Deliv. 6, 599–612 (2009). doi:10.1517/17425240902967607

    Article  CAS  Google Scholar 

  12. Semalty, A., Semalty, M., Singh, D., Rawat, M.S.M.: Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J. Incl. Phenom. Macrocycl. Chem. 67, 253–260 (2010). doi:10.1007/s10847-009-9705-8

    Article  CAS  Google Scholar 

  13. Blois, M.S.: Antioxidant determination by the use of a stable free radical. Nature 181, 1199–1200 (1958). doi:10.1038/1811199a0

    Article  CAS  Google Scholar 

  14. Paradkar, A.R., Pawar, A.P., Chordiya, J.K., Patil, V.B., Ketkar, A.R.: Spherical crystallization of celecoxib. Drug Dev. Ind. Pharm. 28, 1213–1220 (2002). doi:10.1081/DDC-120015354

    Article  CAS  Google Scholar 

  15. Yanyu, X., Yunmei, S., Zhipeng, C., Quineng, P.: The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm. 307, 77–82 (2006). doi:10.1016/j.ijpharm.2005.10.001

    Article  Google Scholar 

  16. Li, Y., Yang, D.J., Chen, S.L., Chen, S.B., Chan, A.S.C.: Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods. Pharm. Res. 25, 563–577 (2007). doi:10.1007/s11095-007-9418-x

    Article  Google Scholar 

  17. Maiti, K., Mukherjee, K., Gantait, A., Saha, B.P., Mukherjee, P.K.: Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 330, 155–163 (2007). doi:10.1016/j.ijpharm.2006.09.025

    Article  CAS  Google Scholar 

  18. Kumar, M., Ahuja, M., Sharma, S.K.: Hepatoprotective study of curcumin-soya lecithin complex. Sci. Pharm. 76, 761–774 (2008). doi:10.3797/scipharm.0808-09

    Article  CAS  Google Scholar 

  19. Singh, D., Rawat, M.S.M., Semalty, A., Semalty, M.: Gallic acid-phospholipid complex: drug incorporation and physicochemical characterization. Lett. Drug Design Discov. 8, 2011, (BSP/LDDD/E-Pub/00114) In press

  20. Shi, K., Cui, F., Yu, Y., Zhang, L., Tao, A., Cun, D.: Preparation and characterization of a novel insulin phospholipid complex. Asian J. Pharm. Sci. 1(3–4), 168–174 (2006)

    CAS  Google Scholar 

  21. Cui, F., Shi, K., Zhang, L., Tao, A., Kawashima, Y.: Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery : preparation, in vitro characterization and in vivo evaluation. J. Control. Release. 114, 242–250 (2006). doi:10.1016/j.jconrel.2006.05.013

    Article  CAS  Google Scholar 

  22. Yoo, H.S., Park, T.G.: Biodegradable nanoparticles containing protein-fatty acid complex for oral delivery of salmon calcitonin. J. Pharm. Sci. 93, 488–495 (2003)

    Google Scholar 

  23. Semalty, A., Semalty, M., Singh, D., Rawat, M.S.M.: Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharma. 59, 335–344 (2009). doi:10.2478/v10007-009-0023-x

    Article  CAS  Google Scholar 

  24. Semalty, A., Semalty, M., Rawat, B.S., Singh, D., Rawat, M.S.M.: Development and evaluation of pharmacosomes of aceclofenac. Indian J. Pharm. Sci. 72, 571–575 (2010). doi:10.4103/0250-474X.78522

    Article  CAS  Google Scholar 

  25. Bombardelli, E., Curri, S.B., Gariboldi, P.: Cosmetic utilization of complexes of Panax ginseng saponins with phospholipids in PHYTOSOME® form. Fitoterapia. 60(S1), 55–70 (1989)

    Google Scholar 

  26. Jithan, A., Ganji, S.: Formulation, excipient properties and pharmacological activities of catechin liposomes. Phcog. Mag. 4(13), 121–126 (2008)

    Google Scholar 

  27. Soares, J.R., Dins, T.C.P., Cunha, A.P.: Antioxidant activity of some extracts of Thymus zygis. Free Rad. Res. 26, 469–478 (1997). doi:10.3109/10715769709084484

    Article  CAS  Google Scholar 

  28. Semalty, A., Semalty, M., Rawat, M.S.M., Federico, F.: Supramolecular phospholipids-polyphenolics interactions: the PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 81, 306–314 (2010). doi:10.1016/j.fitote.2009.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the grant provided by the University Grant Commission, Govt. of India for the research work. Authors are also thankful to LIPOID GmbH Germany for providing the gift sample of phosphatidylcholine for the research work. Facilities provided by the IIT Roorkee, NMR Laboratory, Faculty of Pharmacy Jamia Hamdard, New Delhi and Department of Chemistry, University of Delhi are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Semalty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semalty, A., Semalty, M., Singh, D. et al. Phyto-phospholipid complex of catechin in value added herbal drug delivery. J Incl Phenom Macrocycl Chem 73, 377–386 (2012). https://doi.org/10.1007/s10847-011-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0074-8

Keywords

Navigation