Skip to main content
Log in

Application of the R-matrix method in quantum transport simulations

Tight-binding model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The R-matrix method based on a continuous model is generalized as to become applicable to the atomistic transport simulations with a tight-binding device Hamiltonian. The device elements are introduced as arbitrary atomic clusters in the device area and freedom in the device fragmentation can be used to reduce computations. In the ballistic regime, the best computer performance is achieved by taking individual atoms as the device elements. Non-equilibrium current carrying electronic states are constructed by the forward-backward R-matrix propagation scheme which does not require large computer operations and mass storage. The method is applied to quantum transport in p-Si nanowire with random vacancies and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mil’nikov, G.V., Mori, N., Kamakura, Y.: J.  Comput. Electron. (submitted)

  2. Lherbier, A., Persson, M.P., Niquet, Y.M., Triozon, F., Roche, S.: Phys. Rev. B 77, 085301 (2008)

    Article  Google Scholar 

  3. Markussen, T., Rurali, R., Jauho, A.P., Brandbyge, M.: Phys. Rev. Lett. 99, 076803 (2007)

    Article  Google Scholar 

  4. Neophytou, N., Paul, A., Lundstrom, M.S., Klimeck, G.: IEEE Trans. Electron Devices 55, 1286 (2008)

    Article  Google Scholar 

  5. Svizhenko, A., Leu, P.W., Cho, K.: Phys. Rev. B 75, 125417 (2007)

    Article  Google Scholar 

  6. Pecchia, A., Salamandra, L., Latessa, L., Aradi, B., Frauenheim, T., Di Carlo, A.: IEEE Trans. Electron Devices 54, 3159 (2007)

    Article  Google Scholar 

  7. Luisier, M., Klimeck, G.: IEEE Electron Device Lett. 30, 602 (2009)

    Article  Google Scholar 

  8. Mil’nikov, G.V., Mori, N., Kamakura, Y.: Phys. Rev. B 79, 235337 (2009)

    Article  Google Scholar 

  9. Strahberger, C., Vogl, P.: Phys. Rev. B 62, 7289 (2000)

    Article  Google Scholar 

  10. Rivas, C., Lake, R.: Phys. Status Solidi B 239, 94 (2003)

    Article  Google Scholar 

  11. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  12. Vogl, P., Hjalmarson, H.P., Dow, J.D.: J. Phys. Chem. Solids 44, 365 (1983)

    Article  Google Scholar 

  13. Lee, S., Oyafuso, F., Allmen, P., Klimeck, G.: Phys. Rev. B 69, 045316 (2004)

    Article  Google Scholar 

  14. Goodnick, S.M., Ferry, D.K., Wilmsen, C.W., Liliental, Z., Fathy, D., Krivanek, O.L.: Phys. Rev. B 32, 8171 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuya Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mil’nikov, G., Mori, N. & Kamakura, Y. Application of the R-matrix method in quantum transport simulations. J Comput Electron 9, 256–261 (2010). https://doi.org/10.1007/s10825-010-0321-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0321-z

Keywords

Navigation