Skip to main content
Log in

Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wx gene encodes for the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. The Aegilops species, which are related to wheat, could be important sources of variation in this gene. In addition to its role in starch quality, this gene has been used in phylogenetic studies of wheat. The current study evaluated the variability of Wx gene in seven diploid species of Aegilops genus and compared their nucleotide sequences with the wheat homeologous genes. Nineteen new Wx alleles were found in the seven species evaluated. The alleles detected in two species of the Sitopsis section, Ae. searsii and Ae. speltoides, were related to the Wx-B1 gene of wheat. Two more of the Sitopsis species did not appear to be associated with this genome, whereas the remaining species were related to the Wx-D1 gene of wheat. The results showed an important variation of the Wx gene present in the Aegilops genus, and the 19 new Wx alleles detected could enlarge the genetic pool of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol 22:67–82

    Article  CAS  PubMed  Google Scholar 

  • Baldwin PM (2001) Starch granule-associated proteins and polypeptides: a review. Starch/Staerke 53:475–503

    Article  Google Scholar 

  • Bligh HFJ, Larkin PD, Roach PS, Jones CA, Fu H, Park WD (1998) Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol 38:407–415

    Article  CAS  PubMed  Google Scholar 

  • Caballero L, Bancel E, Debiton C, Branlard G (2008) Granule-bound starch synthase (GBSS) diversity of ancient wheat and related species. Plant Breed 127:548–553

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  PubMed  Google Scholar 

  • Domon E, Fuijita M, Ishikawa N (2002a) The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia. Theor Appl Genet 104:132–138

    Article  CAS  PubMed  Google Scholar 

  • Domon E, Saito A, Takeda K (2002b) Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst 77:351–359

    Article  CAS  PubMed  Google Scholar 

  • Dvořák J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    Article  PubMed  Google Scholar 

  • Dvořák J, Zhang HB (1992) Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theor Appl Genet 84:419–429

    PubMed  Google Scholar 

  • Dvořák J, Luo MC, Yang ZL, Zhang HB (1998a) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  Google Scholar 

  • Dvořák J, Luo MC, Yang ZL (1998b) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434

    PubMed  Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoisier Tech & Doc, Paris, pp 3–56

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fortune PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of waxy and the origin of hexaploid Spartina species (Poaceae). Mol Phylogenet Evol 43:1040–1055

    Article  CAS  PubMed  Google Scholar 

  • Guzmán C, Alvarez JB (2012) Molecular characterization of a novel waxy allele (Wx-A u 1a) from Triticum urartu Thum. ex Gandil. Genet Resour Crop Evol 59:971–979

    Article  Google Scholar 

  • Guzmán C, Caballero L, Alvarez JB (2009) Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genet Resour Crop Evol 56:601–604

    Article  Google Scholar 

  • Guzmán C, Caballero L, Martín LM, Alvarez JB (2012a) Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. Ann Bot 110:1161–1171

    Article  PubMed  Google Scholar 

  • Guzmán C, Caballero L, Yamamori M, Alvarez JB (2012b) Molecular characterization of a new waxy allele with partial expression in spelt wheat. Planta 235:1331–1339

    Article  PubMed  Google Scholar 

  • Huang XQ, Brûlé-Babel A (2012) Sequence diversity, haplotype analysis, association mapping and functional marker development in the waxy and starch synthase IIa genes for grain-yield-related traits in hexaploid wheat (Triticum aestivum L.). Mol Breed 30:627–645

    Article  CAS  Google Scholar 

  • Ingram AL, Doyle JJ (2003) The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. Am J Bot 90:116–122

    Article  CAS  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer, New York, pp 1–76

    Chapter  Google Scholar 

  • Li Z, Chu X, Mouille G, Yan L, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R, Morell MK, Rahman S (1999) The localization and expression of the class ii starch synthases of wheat. Plant Physiol 120:1147–1156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Gao Z, Xiao W, Wei YM, Liu YX, Chen GY, Pu ZE, Chen HP, Zheng YL (2012) Molecular diversity of restriction enzyme sites, Indels and upstream open reading frames (uORFs) of 5′ untransalted regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. Genet Resour Crop Evol 59:1625–1647

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Mason-Gamer RJ (2001) Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst Bot 26:757–768

    Google Scholar 

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2012) Catalogue of gene symbols for wheat. (http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp). Date of last successful access 10 Feb 2013

  • Murai J, Taira T, Ohta D (1999) Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234:71–79

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:253–259

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nieto-Taladriz MT, Rodríguez-Quijano M, Carrillo JM (2000) Polymorphism of waxy proteins in Spanish durum wheats. Plant Breed 119:277–279

    Article  CAS  Google Scholar 

  • Rodriguez-Quijano M, Nieto-Taladriz MT, Carrillo JM (1998) Polymorphism of waxy proteins in Iberian hexaploid wheats. Plant Breed 117:341–344

    Article  CAS  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(W1):W452–W457

    Google Scholar 

  • Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in molecular biology: protocols for nucleic acid analysis by non-radioactive probes. Humana Press, Totawa, NJ, pp 9–15

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. 11. On the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104:155–171

    CAS  PubMed  Google Scholar 

  • Urbano M, Margiotta B, Colaprico G, Lafiandra D (2002) Waxy proteins in diploid, tetraploid and hexaploid wheats. Plant Breed 121:465–469

    Article  CAS  Google Scholar 

  • van de Wal MHBJ, Jacobsen E, Visser RGF (2001) Multiple allelism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the activity of granule-bound starch synthase I and starch composition in potato. Mol Genet Genomics 265:1011–1021

    Article  PubMed  Google Scholar 

  • Wang Z-Y, Zheng F-Q, Shen G-Z, Gao J-P, Snustad DP, Li M-G, Zhang J-L, Hong M-M (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li X, Wang K, Wang X, Li S, Zhang Y, Guo G, Zeller FJ, Hsam SLK, Yan Y, Gustafson P (2011) Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at Glu-3 loci. Genome 54:273–284

    Article  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Weber JL, Vladutiu GD, Tarnopolsky MA (2011) Six novel mutations in the myophosphorylase gene in patients with McArdle disease and a family with pseudo-dominant inheritance pattern. Mol Genet Metab 104:587–591

    Article  CAS  PubMed  Google Scholar 

  • Yamamori M (2009) Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica 165:607–614

    Article  CAS  Google Scholar 

  • Yamamori M, Guzman C (2013) SNPs and an insertion sequence in five Wx-A1 alleles as factors for variant Wx-A1 protein in wheat. Euphytica 192:325–338

    Article  CAS  Google Scholar 

  • Yamamori M, Yamamoto K (2011) Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. J Cereal Sci 54:229–235

    Article  CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    Article  CAS  PubMed  Google Scholar 

  • Yamamori M, Nakamura T, Nagamine T (1995) Polymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T. durum. Plant Breed 114:215–218

    Article  CAS  Google Scholar 

  • Yan L, Bhave M (2001) Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat. Genome 44:582–588

    CAS  PubMed  Google Scholar 

  • Yan L, Bhave M, Fairclough R, Konik C, Rahman S, Appels R (2000) The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 43:264–272

    CAS  PubMed  Google Scholar 

  • Zeng M, Morris CF, Batey IL, Wrigley CW (1997) Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem 74:63–71

    Article  CAS  Google Scholar 

  • Zeven AC, Zeven-Hissink NCh (1976) Genealogies of 14,000 wheat varieties. Netherlands Cereals Centre (Wageningen)—International Maize and Wheat Improvement Center (Mexico)

Download references

Acknowledgments

This research was supported by Grant AGL2010-19643-C02-01 from the Spanish Ministry of Economy and Competitiveness, co-financed with the European Regional Development Fund (FEDER) from the European Union. We thank the National Small Grain Collection (Aberdeen, USA) for supplying the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, R., Alvarez, J.B. & Guzmán, C. Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genet Resour Crop Evol 61, 369–382 (2014). https://doi.org/10.1007/s10722-013-0040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-0040-y

Keywords

Navigation