Skip to main content
Log in

Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Silicon-based quantum dots were intraperitoneally injected in individuals of Carassius auratus gibelio. Their effects on white muscle were investigated by following their distribution and impact on the antioxidative system. The GSH level significantly increased after 1 and 3 days of exposure by, respectively, 85.3 and 25.4%. Seven days later, GSH levels were similar to control concentrations. MDA concentration rose after three days by 46.9% and remained at the same level after 7 days. Protein thiol levels significantly decreased by 6.7 and 8.1% after 3 and 7 days, whereas advanced oxidation protein products increased by 12.7, respectively, 28.1% in the same time intervals. The protein reactive carbonyl groups were raised only after the first day of exposure and returned to the control level later on. SOD specific activity increased up to 48% after 7 days, while CAT activity increased by 328, 176, and 26% after 1, 3, and 7 days of treatment. GST specific activity was up-regulated by 87, 18, and 9%, while GR activity increased by 68, 34, and 9%. G6PD activity was up-regulated by 12, 22, and 50%, whereas GPx activity raised by 75 and 109% compared to control after, respectively, 1, 3, and 7 days. Our results suggest that oxidative stress induced by silicon-based quantum dots was not strong enough to cause permanent damage in the white muscle of crucian carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York and London, pp 673–677

    Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW WRM (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383

    Article  PubMed  CAS  Google Scholar 

  • Albertson RC, Cresko W, Detrich IHW, Postlethwait JH (2009) Evolutionary mutant models for human disease. Trends Genet 25:74–81

    Article  PubMed  CAS  Google Scholar 

  • Alderman CJ, Shah S, Foreman JC, Cham BM, Katz DR (2002) The role of advanced oxidation protein products in regulation of dendritic cell function. Free Rad Biol Med 32:377–385

    Article  PubMed  CAS  Google Scholar 

  • Anderson EJ, Neufer PD (2006) Type II skeletal myofibers possess unique properties. That potentiate mitochondrial H2O2 generation. Am J Physiol Cell Physiol 290:844–851

    Article  Google Scholar 

  • Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y (2004) Quantum dot anti-CD conjugate: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4:1567–1573

    Article  CAS  Google Scholar 

  • Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50:493–496

    Article  PubMed  CAS  Google Scholar 

  • Beutler E (1984) Red cell metabolism. In: Beutler E (ed) A manual of biochemical methods. Grune and Stratton, Orlando, pp 68–73

    Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013−2016

    Google Scholar 

  • Catala A (2010) A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 399:318–323

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty C, Hsu CS, Wen ZH, Lin CS, Agoramoorthy G (2009) Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab 10:116–124

    Article  PubMed  CAS  Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chan W-H, Shiao N-H (2008) Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin 28:259–266

    Article  Google Scholar 

  • Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot toxicity based on intracellular uptake. Small 2:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong J (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183

    Article  PubMed  CAS  Google Scholar 

  • Colston JT, de la Rosa SD, Strader JR, Anderson MA, Freeman GL (2005) H2O2 activates Nox4 through PLA2-dependent arachidonic acid production in adult cardiac fibroblast. FEBS Lett 579:2533–2540

    Article  PubMed  CAS  Google Scholar 

  • De Boeck G, Ngo TTH, Van Campenhout K, Blust R (2003) Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat Toxicol 65:413–424

    Article  PubMed  Google Scholar 

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    Article  PubMed  CAS  Google Scholar 

  • del Rio D, Pellegrini N, Colombi B, Bianchi M, Serafini M, Torta F, Tegoni SM, Musci M, Brighenti F (2003) Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions Clin Chem 49:690–692

    CAS  Google Scholar 

  • Dinu D, Marinescu D, Munteanu MC, Staicu AC, Costache M, Dinischiotu A (2010) Modulatory effects of deltamethrin on antioxidant defence mechanisms and lipid peroxidation in carassius auratus gibelio liver and intestine. Arch Env Contam Toxicol 58:757–764

    Article  CAS  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress and other physiological effects. Aquatic Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Fields R, Dixon HBF (1971) Micro method for determination of reactive carbonyl groups in proteins and peptides, using 2, 4-dinitrophenylhydrazine. Biochem J 121:587–589

    PubMed  CAS  Google Scholar 

  • Filipovska A, Murphy MP (2006) Overview of protein glutathionylation. Curr Protocols Toxicol 28:6.10.11–16.10.18

    Google Scholar 

  • Ford T, Beitinger TL (2005) Temperature tolerance in the goldfish, Carassius auratus. J Therm Biol 30:147–152

    Article  Google Scholar 

  • Gao X, Cui J, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  • Gatti AM, Kirkpatrick J, Gambarelli A, Capitani F, Hansen T, Eloy R, Clermont G (2008) ESEM evaluations of muscle/nanoparticles interface in a rat model. J Mater Sci Mater Med 19:1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Gerhard GS (2007) Small laboratory fish as models for aging research. Ageing Res Rev 6:64–72

    Article  PubMed  Google Scholar 

  • Goldberg DM, Spooner RJ (1983) Glutathione reductase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 111. Verlag Chemie, Weinheim, pp 258–265

    Google Scholar 

  • Gomez-Cabrera MC, Borrás C, Pallardó FV, Sastre J, Ji LL, Vinã J (2005) Decreasing xanthine-oxidase -mediated oxidative stress prevents useful cellular adaptation to exercise in rats. JPhysiol 567:113–120

    Article  CAS  Google Scholar 

  • Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1:121–123

    Article  Google Scholar 

  • Grigoriu C, Nicolae I, Ciupina V, Prodan G, Suematsu H, Yatsui K (2004) Influence of the experimental parameters on silicon nanoparticles produced by laser ablation. J Optoelectr Adv Mat 6:825–830

    CAS  Google Scholar 

  • Grigoriu C, Kuroki Y, Nicolae I, Zhu X, Hirai M, Suematsu H, Takata M, Yatsui K (2005) Photo and cathodoluminescence of Si/SiO2 nanoparticles produced by laser ablation. J Optoelectr Adv Mat 7:2979–2984

    CAS  Google Scholar 

  • Grosser T, Yusuff S, Cheskis E, Pack MA, FitzGerald GA (2002) Developmental expression of functional cyclooxigenases in zebrafish. Proc Natl Acad Sci 99:8418–8423

    Article  PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Hazen SL, Hsu FF, Gaut JP, Crowley JR, Heinecke JW (1999) Modification of proteins and lipids by myeloperoxidase. Methods Enzymol 300:88–105

    Article  PubMed  CAS  Google Scholar 

  • Hegazi MM, Attia ZI, Ashour OA (2010) Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat Toxicol 15:118–125

    Article  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  PubMed  CAS  Google Scholar 

  • Kaisto T, Rahkila P, Marjomäki V, Parton RG, Metsikkö K (1999) Endocytosis in skeletal muscle fibers. Exp Cell Res 253:551–560

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    Article  PubMed  CAS  Google Scholar 

  • Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients and oxidant stress. FASEB J 8:174–181

    PubMed  CAS  Google Scholar 

  • Lee K-H (2007) Quantum dots for molecular imaging. J Nucl Med 48:1408–1410

    Article  PubMed  CAS  Google Scholar 

  • Li F, Zhang Z-P, Peng J, Ciu Z-Q, Pang D-W, Li K, Wei H-P, Zhou Y-F, Wen J-K, Zhang X-E (2009) Imaging viral behavior in mammalian cells with self- assembled capsid- quantum dot hybrid particles. Small 5:718–726

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Randak T (2010) Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. J Appl Toxicol 30:197–203

    PubMed  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Li L, Teng X, Huang X, Liu H, Chen D, Ren J, He J, Tang F (2011) Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 32:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Lohr GW, Waller HD (1974) Glucose-6-phosphate dehydrogenase. In: Bergmeyer HV (ed) Methods of Enzymatic Analysis. Academic Press, New York and London, pp 744–751

    Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mahto SK, Yoon TH, Rhee SW (2010) Cytotoxic effects of surface-modified quantum dots on neuron-like PC12 cells cultured inside microfluidic devices. Biochip J 4:82–88

    Article  CAS  Google Scholar 

  • Malis CD, Bonventre JV (1986) Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria: A model for post-ischemic and toxic mitochondrial damage. J Biol Chem 261:14201–14208

    PubMed  CAS  Google Scholar 

  • Månsson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P, Tågerud S, Montelius L (2004) In vitro sliding of actin filaments labeled with single quantum dots. Biochem Biophys Res Commun 314:529–534

    Article  PubMed  Google Scholar 

  • Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ, Giessen H, Fluegel B, Mohs G, Peyghambarian N (1995) Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J Phys Chem 99:7754–7759

    Article  CAS  Google Scholar 

  • Mitchell DL, Fernandez AA, Nairn RS, Garcia R, Paniker L, Trono D, Thames HD, Gimenez-Conti I (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc Natl Acad Sci 107:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future perspectives. FASEB J 19:311–330

    Article  PubMed  CAS  Google Scholar 

  • Monteiro DA, De Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion) Comparative biochemistry and physiology. Toxicology pharmacology CBP 143:141–149

    Google Scholar 

  • Moyle PB, Cech JJJ (2004) Reproduction in fishes-an introduction in ichthyology. Prentice Hall Inc., NJ

    Google Scholar 

  • Moylen JS, Reid MB (2007) Oxidative Stress chronic disease and muscle wasting. Muscle Nerve 35:411–429

    Article  Google Scholar 

  • Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP (2007) Quantum dot labeling of mesenchymal stem cells. J Nanobiotech 5:1–19

    Article  Google Scholar 

  • O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomed 1:451–472

    Article  Google Scholar 

  • Olaviyan CIO (1975) An introduction to West African ecology. Heinemann Educational Book Ltd, London

    Google Scholar 

  • Paoletti F, Mocali A (1990) Determination of superoxide dismutase activity by purely chemical system based on NADP(H) oxidation. Methods Enzymol 186:209–221

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  PubMed  CAS  Google Scholar 

  • Pi QM, Zhang WJ, Zhou GD, Liu W, Cao Y (2010) Degradation or excretion of quantum dots in mouse embryonic stem cells. BMC Biotechnol 10:36–45

    Article  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise -induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Duarte J, Kavazis AN, Talbert EE (2010) Reactive Oxygen species are signaling molecules for skeletal muscle adaptation. Exp Physiol 95:1–9

    Article  PubMed  CAS  Google Scholar 

  • Raisuddin S, Lee J-S (2008) Fish models in impact assessment of carcinogenic potential of environmental chemical pollutants: An appraisal of hermaphroditic Mangrove Killifish Kryptolebias marmoratus. In: Murakami Y, Nakayama K, Kitamura S-I, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry-biological responses to chemical pollutants. Terrapub, Tokyo, pp 7–15

    Google Scholar 

  • Rajesh M, Sulochana KN, Coral K, Punitham R, Biswas J, Babu K, Ramakrishnan S (2004) Determination of carbonyl group content in plasma proteins as a useful marker to assess impairment in antioxidant defence in patients with Eales’ disease. Ind J Ophtal 52:139–144

    Google Scholar 

  • Rieger S, Kulkarmi RP, Darcy D, Fraser SE, Köster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234:670–681

    Article  PubMed  CAS  Google Scholar 

  • Riener C, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4, 4′-dithiodipyridine. Anal Bioanal Chem 373:266–276

    Article  PubMed  CAS  Google Scholar 

  • Rowley AF (1996) The evolution of inflammatory mediators. Mediators Inflamm 5:3–13

    Article  PubMed  CAS  Google Scholar 

  • Rutkowska M, Strzyewski K, Iskra M, Piorunka-Stolzmann M, Majewski W (2005) Increased protein carbonyl groups in the serum of men with chronic arterial occlusion and the effect of postoperative treatment. Med Sci Monit 11:79–83

    Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  • Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–326

    Article  PubMed  CAS  Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Son SW, Kim JH, Kim SH, Kim H, Chung AY, Choo JB, Oh CH, Park HC (2009) Intravital imaging in zebrafish using quantum dots. Skin Res Technol 15:157–160

    Article  PubMed  Google Scholar 

  • Sun D, Yang K, Zheng G, Li Z, Cao Y (2010) Study on effect of peptide-conjugated near-infrared fluorescent quantum dots on the clone formation, proliferation, apoptosis and tumorigenicity ability of human buccal squamous cell carcinoma cell line BcaCD885. Int J Nanomed 5:401–405

    Article  CAS  Google Scholar 

  • Torres-Ramos YD, Garcia-Guillen ML, Olivares-Corichi IM, Hicks JJ (2009) Correlation of Plasma Protein Carbonyls and C-reactive Protein with GOLD Stage Progression in COPD Patients. Open Resp Med J 3:61–66

    Article  CAS  Google Scholar 

  • Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC, Metodieva D (1994) The reactions superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    Article  PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Nguyen AT, Descamp S, Latsha B (1992) Microtitre plate assay for phagocyte derived taurine chloroaminea. J Clin Lab Annals 6:47–53

    Article  Google Scholar 

  • Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Ngnyen-Khoa T, Nguyen AT, Zingraff J, Yungers P, Deschamps-Latecha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Witko-Sarsat V, Friedlander M, Khoa TN, Capeillère-Blandin C, Nguyen AT, Cantelup S, Dayer J-M, Jungers P, Drüeke T, Descamps-Latscha B (1998) Advanced Oxidation Protein Products as Novel Mediators of Inflamation and Monocyte Activation in Chronic Renal Failure. J Immunol 161:2524–2532

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Shima A, Schartl M (2002) Medaka- a model organism from the far East. Nature Rev Genet 3:53–64

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    Article  PubMed  CAS  Google Scholar 

  • Yu WW, Peng X (2002) Formation of high-quality CdS and other II-VIs semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew Chemie 41:2368–2371

    Article  CAS  Google Scholar 

  • Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomed 3:83–91

    Article  CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticles cellular uptake. Toxicol Sci 110:138–155

    Google Scholar 

  • Zhu Z-J, Carboni R, Quercio JMJ, Yan B, Miranda OR, Anderton DL, Arcado KF, Rotello VM, Vachet RW (2010) Surface properties dictate uptake, distribution, excretion and toxicity of nanoparticles in fish. Small 6:2261–2265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Research Council of Higher Education, Romania, grant number 127TE/2010 and Grant POSDRU 88/1.5/S/61150/2010 co-financed from European Social Fund by the Sectorial Operational Program for Development of Human Resources 2007–2010. The authors are grateful to COST CM1001/2010 Action for the opportunity to change ideas with experts in post-translational modifications of proteins. We also thank Prof. Radu Burlacu for his advice concerning statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Dinischiotu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanca, L., Petrache, S.N., Radu, M. et al. Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio . Fish Physiol Biochem 38, 963–975 (2012). https://doi.org/10.1007/s10695-011-9582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9582-0

Keywords

Navigation