Skip to main content
Log in

Genetic and QTL analyses of yield and a set of physiological traits in pepper

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

An interesting strategy for improvement of a complex trait dissects the complex trait in a number of physiological component traits, with the latter having hopefully a simple genetic basis. The complex trait is then improved via improvement of its component traits. As first part of such a strategy to improve yield in pepper, we present genetic and QTL analyses for four pepper experiments. Sixteen traits were analysed for a population of 149 recombinant inbred lines, obtained from a cross between the large-fruited pepper cultivar ‘Yolo Wonder’ (YW) and the small fruited pepper ‘Criollo de Morelos 334’ (CM334). The marker data consisted of 493 markers assembled into 17 linkage groups covering 1,775 cM. The trait distributions were unimodal, although sometimes skewed. Many traits displayed heterosis and transgression. Heritabilities were high (mean 0.86, with a range between 0.43 and 0.96). A multiple QTL mapping approach per trait and environment yielded 24 QTLs. The average numbers of QTLs per trait was two, ranging between zero and six. The total explained trait variance by QTLs varied between 9 and 61 %. QTL effects differed quantitatively between environments, but not qualitatively. For stem-related traits, the trait-increasing QTL alleles came from parent CM334, while for leaf and fruit related traits the increasing QTL alleles came from parent YW. The QTLs on linkage groups 1b, 2, 3a, 4, 6 and 12 showed pleiotropic effects with patterns that were consistent with the genetic correlations. These results contribute to a better understanding of the genetics of yield-related physiological traits in pepper and represent a first step in the improvement of the target trait yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alimi NA, Bink MCAM, Dieleman JA, Sage-Palloix AM, Voorrips RE, Lefebvre V, Palloix A, van Eeuwijk FA (2010) Exploratory QTL analyses of some pepper physiological traits in two environments. In: Advances in genetics and breeding of capsicum and eggplant: proceedings of the XIVth EUCARPIA meeting on genetics and breeding of Capsicum and eggplant. Editorial Universidad Politécnica de Valencia, Valencia, Spain, pp 295–300

  • Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  PubMed  CAS  Google Scholar 

  • Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50:51–60

    Article  PubMed  CAS  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix A-M, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  PubMed  CAS  Google Scholar 

  • Ben Chaim A, Grube RC, Lapidot M, Jahn M, Paran I (2001a) Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor Appl Genet 102:1213–1220

    Article  CAS  Google Scholar 

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001b) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Ben Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006a) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  PubMed  CAS  Google Scholar 

  • Ben Chaim A, Borovsky Y, Rao G, Gur A, Zamir D, Paran I (2006b) Comparative QTL mapping of fruit size and shape in tomato and pepper. Israel J Plant Sci 54:191–203

    Article  CAS  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu KD, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  PubMed  CAS  Google Scholar 

  • Boer MP, Wright D, Feng LZ, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177:1801–1813

    Article  PubMed  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997a) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant Microbe Interact 10:872–878

    Article  CAS  Google Scholar 

  • Caranta C, Palloix A, Lefebvre V, Daubeze AM (1997b) QTL for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host-cells. Theor Appl Genet 94:431–438

    Article  CAS  Google Scholar 

  • Chaim AB, Borovsky Y, De Jong W, Paran I (2003) Linkage of the a locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    PubMed  CAS  Google Scholar 

  • Chapman S (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:195–208

    Article  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • De Swart EAM, Groenwold R, Stam P, Voorrips RE (2007). QTLs for growth and growth related traits in Capsicum annuum L. In: de Swart EAM (ed) Potential for breeding sweet pepper adapted to cooler growing conditions. PhD thesis, Wageningen University, pp 75–92

  • Hackett CA (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585–599

    Article  PubMed  CAS  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jiang CJ, Zeng ZB (1995) Multiple-trait analysis of genetic-mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Kim KT, Choi HS, Chae Y, Oh DG, Kim BD (2004). Mapping QTL associated with Phytophthora root rot resistance in chilli (Capsicum annuum). In: McCreight JD, Ryder EJ (eds.) Advances in vegetable breeding, pp 251–255

  • Kim HJ, Han JH, Kim S, Lee HR, Shin JS, Kim JH, Cho J, Kim YH, Lee HJ, Kim BD, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058

    Article  PubMed  Google Scholar 

  • Lee HR, Cho MC, Kim HJ, Park SW, Kim BD (2008) Marker development for erect versus pendant-orientated fruit in Capsicum annuum L. Mol Cells 26:548–553

    PubMed  CAS  Google Scholar 

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTL are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

    Article  CAS  Google Scholar 

  • Lefebvre V, Kuntz M, Camara B, Palloix A (1998) The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol Biol 36:785–789

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre V, Daubeze AM, van der Voort JR, Peleman J, Bardin M, Palloix A (2003) QTL for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS Institute, Cary

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Malosetti M, Ribaut JM, Vargas M, Crossa J, van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257

    Article  Google Scholar 

  • Mimura Y, Kageyama T, Minamiyama Y, Hirai M (2009) QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession ‘LS2341’. J Jpn Soc Hortic Sci 78:307–313

    Article  CAS  Google Scholar 

  • Mimura Y, Minamiyama Y, Sano H, Hirai M (2010) Mapping for axillary shooting, flowering date, primary axis length, and number of leaves in pepper (Capsicum annuum). J Jpn Soc Hortic Sci 79:56–63

    Article  CAS  Google Scholar 

  • Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map. Breed Sci 57:129–134

    Article  CAS  Google Scholar 

  • Piepho HP, Moehring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  Google Scholar 

  • Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTL in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • R-Development-Core-Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Saxton A (2004) Genetic analysis of complex traits using SAS. SAS Publ, Cary

    Google Scholar 

  • Sugita T, Yamaguchi K, Kinoshita T, Yuji K, Sugimura Y, Nagata R, Kawasaki S, Todoroki A (2006) QTL analysis for resistance to phytophthora blight (Phytophthora capsici Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. Breed Sci 56:137–145

    Article  CAS  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Voorrips RE, Palloix A, Dieleman JA, Bink MCAM, Heuvelink E, van der Heijden GWAM, Vuylsteke M, Glasbey C, Barócsi A, Magán J, van Eeuwijk, FA (2010) Crop growth models for the -omics era: the EU-SPICY project. In: Advances in Genetics and Breeding of Capsicum and Eggplant: proceedings of the XIVth EUCARPIA Meeting on genetics and breeding of Capsicum and Eggplant. Editorial Universidad Politécnica de Valencia, Valencia, Spain. pp 315–321

  • van Eeuwijk FA, Bink M, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205

    Article  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420

    PubMed  CAS  Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya L, Groenwold R (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C-chinense. Theor Appl Genet 109:1275–1282

    Article  PubMed  Google Scholar 

  • Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004) QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theor Appl Genet 109:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Williams ER, John JA (1999) Construction of resolvable designs with nested treatment structure. Biometr J 41:341–349

    Article  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTL mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211347. We thank the SPICY Industrial Advisory Board for support and discussions. Rik van Wijk and Syngenta are especially acknowledged for their highly valuable help in making available additional SNP markers that strongly improved the quality of the genetic map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. van Eeuwijk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 408 kb)

Appendices

Appendix 1: EU-SPICY experimental set-up

See Tables 7 and 8

Table 7 Allocation of genotypes to subsets, plots and blocks in the NL experiments, including the number of genotypes (#gtp) and number of occupied plots (#plots)
Table 8 Representation of a sample block in SP trials, xx represents the 152 genotypes replicated once each, dd are the dummy genotypes while b stands for border plants

Appendix 2: phenotypic mean comparison

See Tables 9, 10, 11

Table 9 Phenotypic mean comparison for environment NL1
Table 10 Phenotypic mean comparison for environment NL2
Table 11 Phenotypic mean comparison for environment SP1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alimi, N.A., Bink, M.C.A.M., Dieleman, J.A. et al. Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica 190, 181–201 (2013). https://doi.org/10.1007/s10681-012-0767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0767-0

Keywords

Navigation